Cho lục giác ABCDEF. Gọi M, N, P, Q, R, S lần lượt là trung điểm các cạnh AB
Câu hỏi:
Cho lục giác ABCDEF. Gọi M, N, P, Q, R, S lần lượt là trung điểm các cạnh AB, BC, CD, DE, EF, FA. Chứng minh rằng hai tam giác MPR và NQS có cùng trọng tâm.
Trả lời:
Gọi G là trọng tâm tam giác MPR \[ \Rightarrow \overrightarrow {GM} + \overrightarrow {GP} + \overrightarrow {GR} = \overrightarrow 0 \]
Ta cần đi chứng minh G cũng là trọng tâm của ΔNQS bằng cách chứng minh \[\overrightarrow {GN} + \overrightarrow {GQ} + \overrightarrow {GS} = \overrightarrow 0 \]
Ta có: \[2.(\overrightarrow {GN} + \overrightarrow {GQ} + \overrightarrow {GS} )\]
\[ = 2.\overrightarrow {GN} + 2.\overrightarrow {GQ} + 2.\overrightarrow {GS} \]
\[ = (\overrightarrow {GB} + \overrightarrow {GC} ) + (\overrightarrow {GD} + \overrightarrow {GE} ) + (\overrightarrow {GF} + \overrightarrow {GA} )\]
(Vì N, Q, S lần lượt là trung điểm của BC, DE, FA)
\[ = (\overrightarrow {GB} + \overrightarrow {GA} ) + (\overrightarrow {GD} + \overrightarrow {GC} ) + (\overrightarrow {GF} + \overrightarrow {GE} )\]
\[ = 2.\overrightarrow {GM} + 2.\overrightarrow {GP} + 2.\overrightarrow {GR} \]
(Vì M, P, R là trung điểm AB, CD, EF)
\[ = 2.(\overrightarrow {GM} + \overrightarrow {GP} + \overrightarrow {GR} )\]
\[ = 2.\overrightarrow 0 = \overrightarrow 0 \]
\[ \Rightarrow \overrightarrow {GN} + \overrightarrow {GQ} + \overrightarrow {GS} = \overrightarrow 0 \]hay G cũng là trọng tâm của ΔNQS.
Vậy trọng tâm ΔMPR và ΔNQS trùng nhau.