Cho phương trình x2 – 2(m – 1)x + 2m – 5 = 0. a) Chứng minh phương trình trên luôn có 2 nghiệm phân biệt x1; x2 với mọi m.
Câu hỏi:
Cho phương trình x2 – 2(m – 1)x + 2m – 5 = 0.
a) Chứng minh phương trình trên luôn có 2 nghiệm phân biệt x1; x2 với mọi m.
Trả lời:
a) Ta có:
∆’ = (m – 1)2 – (2m – 5)
= m2 – 2m + 1 – 2m + 5
= m2 – 4m + 6
= m2 – 2m.2 + 4 + 2
= (m – 2)2 + 2 > 0 x ∈ ℝ.
Suy ra phương trình đã cho luôn có hai nghiệm phân biệt x1; x2.
Xem thêm bài tập Toán có lời giải hay khác:
Câu 1:
Cho tam giác ABC vuông tại A có AB < AC. Gọi D và E lần lượt là trung điểm của các cạnh AC và BC, kẻ EF ⊥ AB tại F.
a) Chứng minh ADEF là hình chữ nhật.
Xem lời giải »
Câu 2:
b) Gọi G là điểm đối xứng với E qua D. Chứng minh tứ giác AECG là hình thoi.
Xem lời giải »
Câu 3:
Cho ∆ABC vuông tại A, có . Gọi M và N lần lượt là trung điểm của BC và AC.
a) Tính .
Xem lời giải »
Câu 4:
b) Gọi E là điểm đối xứng với M qua N. Chứng minh tứ giác AECM là hình thoi.
Xem lời giải »
Câu 5:
b) Tìm m để hai nghiệm x1; x2 của phương trình có tổng hai nghiệm bằng 6.
Xem lời giải »
Câu 6:
Xác định Parabol y = ax2 + bx + c, biết parabol có đỉnh nằm trên trục hoành và đi qua hai điểm A(0; 1) và B(2; 1).
Xem lời giải »
Câu 8:
Cho a là góc tù và . Tính giá trị của biểu thức:
A = 2sina − cosa.
Xem lời giải »