X

1000 bài tập trắc nghiệm ôn tập môn Toán có đáp án

Cho tam giác ABC có AB = 1, góc A = 105 độ, góc B = 60 độ. Trên cạnh BC lấy


Câu hỏi:

Cho tam giác ABC có AB = 1, \(\widehat A = 105^\circ ,\widehat B = 60^\circ \). Trên cạnh BC lấy điểm E sao cho BE = 1. Vẽ ED song song với AB. Chứng minh: \(\frac{1}{{A{C^2}}} + \frac{1}{{A{D^2}}} = \frac{4}{3}\).

Trả lời:

Cho tam giác ABC có AB = 1, góc A = 105 độ, góc B = 60 độ. Trên cạnh BC lấy (ảnh 1)

Vẽ AH BC (H BC) ; AF AC (F AC) (xem hình)

Từ các dữ kiện đề bài AB = BE = 1, \(\widehat {ABE} = 60^\circ \) ΔABE đều 

AH BE AH  là đường cao cũng là đường trung tuyến nên

BH = BE : 2 = 0,5

Áp dụng định lý Pi–ta–go vào ΔAHB H:

AH2 = AB2 – BH2 = AB2\({\left( {\frac{{BE}}{2}} \right)^2} = 1 - \frac{1}{4} = \frac{3}{4}\left( 1 \right)\)

\(\widehat {ACB} = 180^\circ - \widehat {BAC} - \widehat {ABC} = 180^\circ - 105^\circ - 60^\circ = 15^\circ \)

\(\widehat {BAF} = \widehat {BAC} - \widehat {FAC} = 105^\circ - 90^\circ = 15^\circ \)

Suy ra: \(\widehat {ACB} = \widehat {BAF}\)

Xét tam giác ABC và tam giác FBA có:

\(\widehat {ACB} = \widehat {BAF}\)

Chung \(\widehat B\)

∆ABC ∆FBA (g.g)

\(\frac{{AF}}{{AC}} = \frac{{AB}}{{BC}} = \frac{{BE}}{{BC}} = \frac{{AD}}{{AC}}\)(do ED // AB)

Nên AF = AD (2)

Tam giác AFC vuông tại A, đường cao AH nên có hệ thức lượng:

\(\frac{1}{{A{C^2}}} + \frac{1}{{A{F^2}}} = \frac{1}{{A{H^2}}} = \frac{4}{3}\)

Mà AF = AD nên \(\frac{1}{{A{C^2}}} + \frac{1}{{A{D^2}}} = \frac{4}{3}\).

Xem thêm bài tập Toán có lời giải hay khác:

Câu 1:

Cho hình bình hành ABCD. Chứng minh rằng \(\overrightarrow {AB} + 2\overrightarrow {AC} + \overrightarrow {AD} = 3\overrightarrow {AC} \).

Xem lời giải »


Câu 2:

Cho biểu thức \(A = 1 + \left( {\frac{{2a + \sqrt a - 1}}{{1 - a}} - \frac{{2a\sqrt a - \sqrt a + a}}{{1 - a\sqrt a }}} \right).\frac{{a - \sqrt a }}{{2\sqrt a - 1}}\). Rút gọn A.

Xem lời giải »


Câu 3:

Tìm x biết: (4x – 3)2 – 3x(3 – 4x) = 0.

Xem lời giải »


Câu 4:

Rút gọn phân thức: \(\frac{{\left( {{x^2} + 3x + 2} \right)\left( {{x^2} - 25} \right)}}{{{x^2} + 7x + 10}}\).

Xem lời giải »


Câu 5:

Cho tam giác vuông ABC có \(\widehat A = 90^\circ \). Kết quả nào sau đây đúng?

Xem lời giải »


Câu 6:

Cho định lí: "Nếu m,n là hai số nguyên dương và mỗi số đều chia hết cho 3 thì m2 + n2 cũng chia hết cho 3". Hãy phát biểu và chứng định lí đảo của định lí trên (nếu có).

Xem lời giải »


Câu 7:

Giải phương trình: \(\cos \left( {3x + \frac{\pi }{4}} \right) = 0\).

Xem lời giải »


Câu 8:

Giải phương trình: cos3x – sin3x = 1.

Xem lời giải »