X

1000 bài tập trắc nghiệm ôn tập môn Toán có đáp án

Cho tam giác ABC có AB = 4, AC = 6 và góc BAC = 60 độ. Gọi M là trung điểm


Câu hỏi:

Cho tam giác ABC có AB = 4, AC = 6 và \(\widehat {BAC} = 60^\circ \). Gọi M là trung điển của BC, điểm N thỏa mãn \(\overrightarrow {AN} = \frac{7}{{12}}\overrightarrow {AC} \). Chứng minh AM vuông góc BN.

Trả lời:

\(\overrightarrow {AM} = \frac{1}{2}\left( {\overrightarrow {AB} + \overrightarrow {AC} } \right) = \frac{1}{2}\overrightarrow {AB} + \frac{1}{2}\overrightarrow {AC} \)

\(\overrightarrow {BN} = \overrightarrow {AN} - \overrightarrow {AB} = \frac{7}{{12}}\overrightarrow {AC} - \overrightarrow {AB} \)

\(\overrightarrow {AM} .\overrightarrow {BN} = \left( {\frac{1}{2}\overrightarrow {AB} + \frac{1}{2}\overrightarrow {AC} } \right)\left( {\frac{7}{{12}}\overrightarrow {AC} - \overrightarrow {AB} } \right)\)

\( = \frac{7}{{24}}\overrightarrow {AB} .\overrightarrow {AC} + \frac{7}{{24}}A{C^2} - \frac{1}{2}A{B^2} - \frac{1}{2}\overrightarrow {AB} .\overrightarrow {AC} \)

\( = \frac{{ - 5}}{{24}}\overrightarrow {AB} .\overrightarrow {AC} + \frac{7}{{24}}A{C^2} - \frac{1}{2}A{B^2}\)

\( = \frac{{ - 5}}{{24}}AB.AC.\cos \widehat A + \frac{7}{{24}}A{C^2} - \frac{1}{2}A{B^2}\)

\( = \frac{{ - 5}}{{24}}.4.6.\cos 60^\circ + \frac{7}{{24}}{.6^2} - \frac{1}{2}{.4^2}\)

= 0

Vậy AM vuông góc BN.

Xem thêm bài tập Toán có lời giải hay khác:

Câu 1:

Trong mặt phẳng cho 15 điểm phân biệt trong đó không có 3 điểm nào thẳng hàng. Số tam giác có đỉnh là 3 trong số 15 điểm đã cho là?

Xem lời giải »


Câu 2:

Giải phương trình: sin2x – cos2x + 3sinx – cosx – 1 = 0.

Xem lời giải »


Câu 3:

Cho hai tập hợp X = (0; 3] và Y = (a; 4). Tìm tất cả các giá trị của a ≤ 4 để X ∩ Y ≠ .

Xem lời giải »


Câu 4:

Làm theo mẫu: \(\frac{{143}}{{10}} = 14;\frac{3}{{10}} = 0,3\).

Yêu cầu: \(\frac{{126}}{{100}} = ...;\frac{{26}}{{100}} = ...\)

\(\frac{{1246}}{{10}} = ...;\frac{6}{{10}} = ...\)

Xem lời giải »


Câu 5:

Cho tam giác ABC có đường cao AI. Từ A kẻ tia Ax vuông góc với AC, từ B kẻ tia By song song với AC. Gọi M là giao điểm của tia Ax và tia By. Nối M với trung điểm P của AB, đường MP cắt AC tại Q và BQ cắt AI tại H.

a) Tứ giác AMBQ là hình gì?

b) Chứng minh rằng CH  AB.

c) Chứng minh tam giác PIQ cân.

Xem lời giải »


Câu 6:

Cho tam giác ABC. Gọi O là một điểm thuộc miền trong tam giác. Gọi M, N, P, Q lần lượt là trung điểm của OB, OC, AC, AB.

a) Chứng minh MNPQ là hình bình hành.

b) Xác định vị trí O để MNPQ là hình chữ nhật.

Xem lời giải »


Câu 7:

Cho tam giác ABC nhọn có trực tâm H. Chứng minh:

\(\tan A.\overrightarrow {HA} + \tan B.\overrightarrow {HB} + \tan C.\overrightarrow {HC} = \overrightarrow 0 \).

Xem lời giải »


Câu 8:

Cho tam giác ABC vuông ở A, đường cao AH. Kẻ HD vuông góc với AB và HE vuông góc với AC (D trên AB, E trên AC). Gọi O là giao điểm của AH và DE.

a) Chứng minh AH = DE.

b) Gọi P và Q lần lượt là trung điểm của BH và HC. Chứng minh tứ giác DEQP là hình thang vuông.

c) Chứng minh O là trực tâm của tam giác ABQ.

d) Chứng minh SABC = 2SDEQP.

Xem lời giải »