X

1000 bài tập trắc nghiệm ôn tập môn Toán có đáp án

Cho tam giác ABC có đường cao AI. Từ A kẻ tia Ax vuông góc với AC, từ B kẻ tia


Câu hỏi:

Cho tam giác ABC có đường cao AI. Từ A kẻ tia Ax vuông góc với AC, từ B kẻ tia By song song với AC. Gọi M là giao điểm của tia Ax và tia By. Nối M với trung điểm P của AB, đường MP cắt AC tại Q và BQ cắt AI tại H.

a) Tứ giác AMBQ là hình gì?

b) Chứng minh rằng CH  AB.

c) Chứng minh tam giác PIQ cân.

Trả lời:

Cho tam giác ABC có đường cao AI. Từ A kẻ tia Ax vuông góc với AC, từ B kẻ tia (ảnh 1)

a) Ta có: \(\left\{ \begin{array}{l}\widehat {AQB} = 90^\circ \\\widehat {MAQ} = 90^\circ \\\widehat {MBQ} = 90^\circ \end{array} \right.\)

Suy ra: AMBQ là hình chữ nhật.

b) Ta có: AI BC (giả thiết) và BQ AC

Nên H là trực tâm của tam giác ABC

Suy ra: CH AB

c) Ta có: PQ = \(\frac{{AB}}{2}\)(Vì PQ là đường trung tuyến ứng với cạnh huyền trong tam giác vuông ABQ)

PI = \(\frac{{AB}}{2}\)(Vì PI là đường trung tuyến ứng với cạnh huyền trong tam giác vuông ABI)

Suy ra: PQ = PI

Nên Tam giác QIP cân tại P.

Xem thêm bài tập Toán có lời giải hay khác:

Câu 1:

Trong mặt phẳng cho 15 điểm phân biệt trong đó không có 3 điểm nào thẳng hàng. Số tam giác có đỉnh là 3 trong số 15 điểm đã cho là?

Xem lời giải »


Câu 2:

Giải phương trình: sin2x – cos2x + 3sinx – cosx – 1 = 0.

Xem lời giải »


Câu 3:

Cho hai tập hợp X = (0; 3] và Y = (a; 4). Tìm tất cả các giá trị của a ≤ 4 để X ∩ Y ≠ .

Xem lời giải »


Câu 4:

Làm theo mẫu: \(\frac{{143}}{{10}} = 14;\frac{3}{{10}} = 0,3\).

Yêu cầu: \(\frac{{126}}{{100}} = ...;\frac{{26}}{{100}} = ...\)

\(\frac{{1246}}{{10}} = ...;\frac{6}{{10}} = ...\)

Xem lời giải »


Câu 5:

Cho tam giác ABC. Gọi O là một điểm thuộc miền trong tam giác. Gọi M, N, P, Q lần lượt là trung điểm của OB, OC, AC, AB.

a) Chứng minh MNPQ là hình bình hành.

b) Xác định vị trí O để MNPQ là hình chữ nhật.

Xem lời giải »


Câu 6:

Cho tam giác ABC nhọn có trực tâm H. Chứng minh:

\(\tan A.\overrightarrow {HA} + \tan B.\overrightarrow {HB} + \tan C.\overrightarrow {HC} = \overrightarrow 0 \).

Xem lời giải »


Câu 7:

Cho tam giác ABC vuông ở A, đường cao AH. Kẻ HD vuông góc với AB và HE vuông góc với AC (D trên AB, E trên AC). Gọi O là giao điểm của AH và DE.

a) Chứng minh AH = DE.

b) Gọi P và Q lần lượt là trung điểm của BH và HC. Chứng minh tứ giác DEQP là hình thang vuông.

c) Chứng minh O là trực tâm của tam giác ABQ.

d) Chứng minh SABC = 2SDEQP.

Xem lời giải »


Câu 8:

Cho x > 0, tìm giá trị nhỏ nhất của M = \(4{x^2} - 3x + \frac{1}{{4x}} + 2021\).

Xem lời giải »