X

1000 bài tập trắc nghiệm ôn tập môn Toán có đáp án

Cho tam giác ABC vuông cân tại C, M là điểm bất kỳ trên cạnh AB. Vẽ MF vuông góc BC


Câu hỏi:

Cho tam giác ABC vuông cân tại C, M là điểm bất kỳ trên cạnh AB. Vẽ MF vuông góc BC tại F, ME vuông góc AC tại E. Gọi D là trung điểm AB. Chứng minh rằng tam giác DEF vuông cân. 

Trả lời:

Cho tam giác ABC vuông cân tại C, M là điểm bất kỳ trên cạnh AB. Vẽ MF vuông góc BC  (ảnh 1)

Tam giác ABC vuông cân tại C \(\widehat {CBA} = \widehat {CAB} = 45^\circ \)

Xét tam giác AME có: \(\widehat {AEM} = 90^\circ \); \(\widehat {EAM} = \widehat {CAB} = 45^\circ \)

ΔAME vuông cân tại E AE = EM

CMTT ta có tam giác BMF vuông cân tại F MF = BF

Xét tứ giác CEMF có \(\widehat {CEM} = \widehat {CFM} = \widehat {ECF} = 90^\circ \)

CEMF là hình chữ nhật

EM = CF, MF = CE

EM = CF = AE, MF = CE = BF

Tam giác ABC vuông cân tại C

Trung tuyến CD đồng thời là đường cao, phân giác

CD AB \(\widehat {BCD} = 45^\circ \)

Xét ΔAED và ΔCFD có:

AE = CF

AD = CD(tam giác ACD vuông cân tại D)

\(\widehat {DAE} = \widehat {DCF} = 45^\circ \)

ΔAED = ΔCDF(c.g.c)

DE = DF(1) (hai cạnh tương ứng) và \(\widehat {ADE} = \widehat {CDF}\) (hai góc tương ứng).

\(\widehat {ADE} + \widehat {CDE} = \widehat {CDF} + \widehat {CDE}\)

\(\widehat {ADC} = \widehat {EDF}\)

\(\widehat {ADC} = 90^\circ \)(CD AB)

\(\widehat {EDF} = 90^\circ \)(2)

Từ (1) và (2) suy ra tam giác DEF vuông cân tại D.

Xem thêm bài tập Toán có lời giải hay khác:

Câu 1:

Tìm tất cả giá trị của tham số m để hàm số y = mx2 – (m + 6)x nghịch biến trên khoảng (–1; +∞).

Xem lời giải »


Câu 2:

Tính bằng cách thuận tiện: \(\frac{1}{4}:0,25 - \frac{1}{8}:0,125 + \frac{1}{2}:0,5 - \frac{1}{{10}}\).

Xem lời giải »


Câu 3:

Xe thứ nhất chở được 25 tấn hàng, xe thứ hai chở 35 tấn hàng, xe thứ ba chở bằng trung bình cộng 3 xe. Hỏi xe thứ 3 chở bao nhiêu tấn hàng?

Xem lời giải »


Câu 4:

A = {1; 2; 3; …; 16}. Bốc ngẫu nhiên 3 phần tử trong A. Tính xác suất để để tổng 3 số bốc ra chia hết cho 3.

Xem lời giải »


Câu 5:

Cho tam giác ABC vuông tại A; AB = 6; AC = 8. Phép vị tự tâm A tỷ số \(\frac{3}{2}\) đến B thành B'; biến C thành C' tính bán kính R của đường tròn ngoại tiếp tam giác AB'C'.

Xem lời giải »


Câu 6:

Cho tam giác ABC vuông ở A(AB<AC ) đường cao AH . Gọi D là điểm đối xứng của A qua H . Đường thẳng kẻ qua D song song với AB cắt BC và AC lần lượt là ở M và N . Chứng minh:

a, Tứ giác ABDM là hình thoi

b, AM vuông góc với CD .

Xem lời giải »


Câu 7:

Cho đường tròn (O; R). Vẽ dây AB sao cho số đo của cung nhỏ AB bằng 1\(\frac{1}{2}\) số đo của cung lớn AB. Tính diện tích của tam giác AOB.

Xem lời giải »


Câu 8:

Chọn ngẫu nhiên 2 số khác nhau từ 30 số nguyên dương đầu tiên. Xác suất để chọn được hai số có tổng là một số chẵn bằng?

Xem lời giải »