X

1000 bài tập trắc nghiệm ôn tập môn Toán có đáp án

Cho tam giác đều ABC tâm O, M là điểm bất kỳ trong tam giác. Hình chiếu của


Câu hỏi:

Cho tam giác đều ABC tâm O, M là điểm bất kỳ trong tam giác. Hình chiếu của M xuống ba cạnh của tam giác lần lượt là D, E, F. Hệ thức giữa các vectơ \(\overrightarrow {MD} ,\overrightarrow {ME} ,\)\[\overrightarrow {MF} ,\] \(\overrightarrow {MO} \) là gì?

Trả lời:

Cho tam giác đều ABC tâm O, M là điểm bất kỳ trong tam giác. Hình chiếu của (ảnh 1)

Qua M kẻ các đường thẳng song song với các cạnh của tam giác QK // AB; RH // AC; SP // BC.

Dễ thấy các tam giác MKH; MRS; MPQ đều là các tam giác đều.

Ta lại có MD  HK nên D cũng là trung điểm thuộc cạnh HK của tam giác MHK.

Ta có: \(2\overrightarrow {MD} = \overrightarrow {MH} + \overrightarrow {MK} \)

Tương tự: \(2\overrightarrow {ME} = \overrightarrow {MP} + \overrightarrow {MQ} \); \(2\overrightarrow {MF} = \overrightarrow {MR} + \overrightarrow {MS} \)

\(2\left( {\overrightarrow {MD} + \overrightarrow {ME} + \overrightarrow {MF} } \right) = \left( {\overrightarrow {MQ} + \overrightarrow {MR} } \right) + \left( {\overrightarrow {MP} + \overrightarrow {MH} } \right) + \left( {\overrightarrow {MS} + \overrightarrow {MK} } \right)\)

Tứ giác MRQA là hình bình hành nên \(\overrightarrow {MQ} + \overrightarrow {MR} = \overrightarrow {MA} \)

Tương tự: \(\overrightarrow {MP} + \overrightarrow {MH} = \overrightarrow {MC} ;\,\,\overrightarrow {MS} + \overrightarrow {MK} = \overrightarrow {MB} \)

\(2\left( {\overrightarrow {MD} + \overrightarrow {ME} + \overrightarrow {MF} } \right) = \overrightarrow {MA} + \overrightarrow {MB} + \overrightarrow {MC} \)

Vì O là trọng tâm của tam giác ABC và M là một điểm bất kì nên

\(\overrightarrow {MA} + \overrightarrow {MB} + \overrightarrow {MC} = 3\overrightarrow {MO} \)

\(\overrightarrow {MD} + \overrightarrow {ME} + \overrightarrow {MF} = \frac{3}{2}\overrightarrow {MO} \)

Vậy hệ thức giữa các vectơ \(\overrightarrow {MD} ,\overrightarrow {ME} ,\)\[\overrightarrow {MF} ,\]\(\overrightarrow {MO} \)\(\overrightarrow {MD} + \overrightarrow {ME} + \overrightarrow {MF} = \frac{3}{2}\overrightarrow {MO} .\)

Xem thêm bài tập Toán có lời giải hay khác:

Câu 1:

Gọi S là tập hợp các số tự nhiên có hai chữ số. Chọn ngẫu nhiên đồng thời hai số từ tập hợp S. tính xác suất để hai số được chọn có chữ số hàng đơn vị giống nhau.

Xem lời giải »


Câu 2:

Gọi S là tập hợp các số tự nhiên có hai chữ số. Trong các số: 7; 15; 106; 99, số nào thuộc và số nào không thuộc tập S? Dùng kí hiệu để trả lời.

Xem lời giải »


Câu 3:

Số nghiệm của phương trình \({\log _3}x = {\log _2}\left( {1 + \sqrt x } \right)\)

Xem lời giải »


Câu 4:

Giải phương trình: \(3{\log _3}\left( {1 + \sqrt x + \sqrt[3]{x}} \right) = 2{\log _2}\left( {\sqrt x } \right).\)

Xem lời giải »


Câu 5:

Có bao nhiêu cặp số nguyên (x; y) thỏa mãn 0 ≤ x ≤ 2020 và log3(3x + 3) + x = 2y + 9y?

Xem lời giải »


Câu 6:

Cho phương trình \(\left( {2\log _3^2x - {{\log }_3}x - 1} \right)\sqrt {{5^x} - m} = 0\) (m là tham số thực). Có tất cả bao nhiêu giá trị nguyên dương của m để phương trình đã cho có đúng hai nghiệm phân biệt?

Xem lời giải »


Câu 7:

Tìm tập nghiệm của phương trình \(\log \left( {{x^2} - x - 6} \right) + x = \log \left( {x + 2} \right) + 4.\)

Xem lời giải »


Câu 8:

Trong không gian Oxyz, cho mặt phẳng (P): x + 2y + 2z + 4 = 0 và mặt cầu (S): x2 + y2 + z2 − 2x − 2y − 2z – 1 = 0. Tìm tọa độ của điểm M trên (S) sao cho d(M, (P)) đạt GTNN.

Xem lời giải »