Cho tam giác đều ABC tâm O, M là điểm bất kỳ trong tam giác. Hình chiếu của
Câu hỏi:
Cho tam giác đều ABC tâm O, M là điểm bất kỳ trong tam giác. Hình chiếu của M xuống ba cạnh của tam giác lần lượt là D, E, F. Hệ thức giữa các vectơ \(\overrightarrow {MD} ,\overrightarrow {ME} ,\)\[\overrightarrow {MF} ,\] \(\overrightarrow {MO} \) là gì?
Trả lời:
Qua M kẻ các đường thẳng song song với các cạnh của tam giác QK // AB; RH // AC; SP // BC.
Dễ thấy các tam giác MKH; MRS; MPQ đều là các tam giác đều.
Ta lại có MD ⊥ HK nên D cũng là trung điểm thuộc cạnh HK của tam giác MHK.
Ta có: \(2\overrightarrow {MD} = \overrightarrow {MH} + \overrightarrow {MK} \)
Tương tự: \(2\overrightarrow {ME} = \overrightarrow {MP} + \overrightarrow {MQ} \); \(2\overrightarrow {MF} = \overrightarrow {MR} + \overrightarrow {MS} \)
⇒ \(2\left( {\overrightarrow {MD} + \overrightarrow {ME} + \overrightarrow {MF} } \right) = \left( {\overrightarrow {MQ} + \overrightarrow {MR} } \right) + \left( {\overrightarrow {MP} + \overrightarrow {MH} } \right) + \left( {\overrightarrow {MS} + \overrightarrow {MK} } \right)\)
Tứ giác MRQA là hình bình hành nên \(\overrightarrow {MQ} + \overrightarrow {MR} = \overrightarrow {MA} \)
Tương tự: \(\overrightarrow {MP} + \overrightarrow {MH} = \overrightarrow {MC} ;\,\,\overrightarrow {MS} + \overrightarrow {MK} = \overrightarrow {MB} \)
⇒ \(2\left( {\overrightarrow {MD} + \overrightarrow {ME} + \overrightarrow {MF} } \right) = \overrightarrow {MA} + \overrightarrow {MB} + \overrightarrow {MC} \)
Vì O là trọng tâm của tam giác ABC và M là một điểm bất kì nên
\(\overrightarrow {MA} + \overrightarrow {MB} + \overrightarrow {MC} = 3\overrightarrow {MO} \)
⇒ \(\overrightarrow {MD} + \overrightarrow {ME} + \overrightarrow {MF} = \frac{3}{2}\overrightarrow {MO} \)
Vậy hệ thức giữa các vectơ \(\overrightarrow {MD} ,\overrightarrow {ME} ,\)\[\overrightarrow {MF} ,\]\(\overrightarrow {MO} \) là \(\overrightarrow {MD} + \overrightarrow {ME} + \overrightarrow {MF} = \frac{3}{2}\overrightarrow {MO} .\)