Cho dãy số (un) là một cấp số cộng, biết u2 + u21 = 50. Tính tổng của 22 số hạng đầu của dãy.
Câu hỏi:
Cho dãy số (un) là một cấp số cộng, biết u2 + u21 = 50. Tính tổng của 22 số hạng đầu của dãy.
Trả lời:
Lời giải
Gọi cấp số cộng có công sai d và số hạng đầu u1.
Khi đó u2 = u1 + d; u21 = u1 + 20d
Do đó u2 + u21 = 50 Û u1 + d + u1 + 20d = 50
Û 2u1 + 21d = 50
Tổng 22 số hạng đầu tiên của dãy là:
\({S_{22}} = \frac{{\left( {{u_1} + {u_{22}}} \right)\,.\,22}}{2} = \frac{{\left( {{u_1} + {u_1} + 21d} \right)\,.\,22}}{2}\)
\( = \frac{{\left( {2{u_1} + 21d} \right)\,.\,22}}{2} = \frac{{50\,.\,22}}{2} = 550\).
Xem thêm bài tập Toán có lời giải hay khác:
Câu 1:
Cho \(\left\{ \begin{array}{l}a + b \ne 0\\a;\;b \ne 0\end{array} \right.\). Chứng minh rằng: \[\sqrt {\frac{1}{{{a^2}}} + \frac{1}{{{b^2}}} + \frac{1}{{{{\left( {a + b} \right)}^2}}}} = \left| {\frac{1}{a} + \frac{1}{b} - \frac{1}{{a + b}}} \right|\].
Xem lời giải »
Câu 2:
Cho a, b, c là các số hữu tỉ khác 0 thỏa mãn a + b + c = 0. Chứng minh rằng: \(\frac{1}{{{a^2}}} + \frac{1}{{{b^2}}} + \frac{1}{{{c^2}}}\) là bình phương của một số hữu tỉ.
Xem lời giải »
Câu 3:
Cho biểu thức: \[A = \sqrt {\frac{{{{\left( {{x^2} - 3} \right)}^2} + 12{x^2}}}{{{x^2}}}} + \sqrt {{{\left( {x + 2} \right)}^2} - 8x} \].
a) Rút gọn A.
b) Tìm các giá trị nguyên của x để giá trị của A là một số nguyên.
Xem lời giải »
Câu 4:
Cho biểu thức: \(P = \left( { - \frac{2}{3}{x^2}{y^3}{z^2}} \right){\left( { - \frac{1}{2}xy} \right)^3}{\left( {x{y^2}z} \right)^2}\).
a) Rút gọn biểu thức P.
b) Tìm bậc và hệ số biểu thức B.
c) Tìm giá trị các biến để P £ 0.
Xem lời giải »
Câu 6:
Có bao nhiêu mặt cầu chứa một đường tròn cho trước?
Xem lời giải »