X

1000 bài tập trắc nghiệm ôn tập môn Toán có đáp án

Cho tứ giác ABCD có hai đường chéo AC và BD vuông góc với nhau. Gọi M, N, P, Q lần lượt là trung điểm của AB, BC, CD, DA. Chứng minh rằng M, N, P, Q cùng nằm trên một đường tròn.


Câu hỏi:

Cho tứ giác ABCD có hai đường chéo AC và BD vuông góc với nhau. Gọi M, N, P, Q lần lượt là trung điểm của AB, BC, CD, DA. Chứng minh rằng M, N, P, Q cùng nằm trên một đường tròn.

Trả lời:

Cho tứ giác ABCD có hai đường chéo AC và BD vuông góc với nhau. Gọi M, N, P, Q lần lượt là trung điểm của AB, BC, CD, DA. Chứng minh rằng M, N, P, Q cùng nằm trên một đường tròn. (ảnh 1)

Ta có MN, NP, PQ, QM lần lượt là đường trung bình của các tam giác ABC, BCD, ACD, ABD.

Suy ra MN // AC; NP // BD; PQ // AC; QM // BD.

Mà AC BD (giả thiết).

Do đó MN NP và PQ QM.

Vì vậy MNP^+PQM^=90°+90°=180°.

Suy ra tứ giác MNPQ nội tiếp đường tròn đường kính MP.

Vậy M, N, P, Q cùng nằm trên một đường tròn.

Xem thêm bài tập Toán có lời giải hay khác:

Câu 1:

Cho bốn số nguyên dương a, b, c, d thỏa mãn a2 + b2 = c2 + d2. Chứng minh rằng a + b + c + d là hợp số.

Xem lời giải »


Câu 2:

Cho x + y = 3. Tính giá trị biểu thức:

A = x3 + x2y – 3x2 + xy + y2 – 4y – x + 3.

Xem lời giải »


Câu 3:

Cho hình vuông, nếu giảm cạnh hình vuông đó đi 7 m thì diện tích giảm đi 84 m2. Tính diện tích hình vuông ban đầu.

Xem lời giải »


Câu 4:

Tìm hệ số lớn nhất trong khai triển (1 + 2x)20.

Xem lời giải »


Câu 5:

Cho các số dương x, y, z thỏa mãn xy + yz + zx = 671. Chứng minh rằng

xx2yz+2013+yy2zx+2013+zz2xy+20131x+y+z.

Xem lời giải »


Câu 6:

Cho đường tròn tâm O, từ điểm M ở bên ngoài đường tròn (O), kẻ các tiếp tuyến MA, MB (A, B là các tiếp điểm), kẻ cát tuyến MCD không đi qua tâm O (C nằm giữa M và D; O và B nằm về hai phía so với cát tuyến MCD).

a) Chứng minh tứ giác MAOB nội tiếp.

Xem lời giải »


Câu 7:

b) Chứng minh MB2 = MC.MD.

Xem lời giải »


Câu 8:

c) Gọi H là giao điểm của AB và OM. Chứng minh AB là phân giác của CHD^ .

Xem lời giải »