Chứng minh rằng n3 (n2 – 7)2 – 36n chia hết cho 7.
Câu hỏi:
Chứng minh rằng n3 (n2 – 7)2 – 36n chia hết cho 7.
Trả lời:
n3 (n2 – 7)2 – 36n
= n [n2 (n2 – 7)2 – 62]
= n [n (n2 – 7) – 6][ n (n2 – 7) + 6]
= n (n3 – 7n – 6)(n3 – 7n + 6)
= n (n3 – 3n2 + 3n2 – 9n + 2n – 6)( n3 + 3n2 – 3n2 – 9n + 2n + 6)
= n [(n2 (n – 3) + 3n (n – 3) + 2(n – 3)][(n2 (n + 3) – 3n (n – 3) + 2(n + 3)]
= n(n – 3)(n + 3)(n2 + 3n + 2)(n2 – 3n + 2)
= n(n – 3)(n + 3)(n + 1)(n + 2)(n – 1)(n – 2).
Ta thấy đây là 7 số tự nhiên liên tiếp nên sẽ tồn tại ít nhất 1 số chia hết cho 7.
Suy ra: tích của 7 số tự nhiên liên tiếp chia hết cho 7 hay n3 (n2 – 7)2 – 36n chia hết cho 7.
Vậy n3 (n2 – 7)2 – 36n chia hết cho 7.
Xem thêm bài tập Toán có lời giải hay khác:
Câu 1:
Tìm số tự nhiên a nhỏ nhất sao cho chia a cho 3; 5; 7 được số dư theo thứ tự là 2; 3; 4.
Xem lời giải »
Câu 2:
Tìm số tự nhiên có hai chữ số biết rằng khi chia số đó cho hiệu các chữ số của nó ra được thương là 28 và dư 1.
Xem lời giải »
Câu 5:
Khi lấy tổng của các số tự nhiên từ 1 đến 49 trừ đi 25 ta được kết quả là bao nhiêu?
Xem lời giải »
Câu 6:
Một ô tô giờ thứ nhất chạy được 40km, giờ thứ hai chạy được nhiều hơn giờ thứ nhất 20km, quãng đường ô tô chạy được trong giờ thứ ba bằng trung bình cộng các quãng đường ô tô chạy được trong hai giờ đầu. Hỏi giờ thứ ba ô tô đó chạy được bao nhiêu km?
Xem lời giải »
Câu 7:
Một cửa hàng bán dầu, người ta chứa đầy dầu trong các thùng 20 lít. Nếu đổ số dầu đó vào các can 5 lít thì số can 5 lít nhiều hơn số thùng 20 lít là 30 cái. Hỏi cửa hàng đó có bao nhiêu lít dầu?
Xem lời giải »
Câu 8:
Tìm số tự nhiên a lớn nhất, biết rằng 480 ⋮ a và 600 ⋮ a.
Xem lời giải »