Chứng minh tổng 3 góc tam giác bằng 180 độ.
Câu hỏi:
Chứng minh tổng 3 góc tam giác bằng 180 độ.
Trả lời:
Lời giải
Qua A ta kẻ đường thẳng d song song với BC tạo ra ba góc tại điểm A lần lượt là \({\widehat A_1},\;{\widehat A_2},\;{\widehat A_3}\)
Vì BC song song với đường thẳng d nên suy ra:
\(\widehat {CBA} = {\widehat A_1}\) (so le trong)
\(\widehat {BCA} = {\widehat A_3}\) (so le trong)
\( \Rightarrow \widehat {ABC} + \widehat {BAC} + \widehat {BCA} = {\widehat A_1} + {\widehat A_2} + {\widehat A_3}\)
Do \({\widehat A_1} + {\widehat A_2} + {\widehat A_3} = 180^\circ \), vì tổng ba góc là góc bẹt nên suy ra:
\(\widehat {ABC} + \widehat {BAC} + \widehat {BCA} = 180^\circ \)
Hay tổng 3 góc trong một tam giác bằng 180 độ.
Xem thêm bài tập Toán có lời giải hay khác:
Câu 1:
Cho hệ bất phương trình sau, biểu diễn hình học tập nghiệm:
\[\left\{ \begin{array}{l}2x - y \le 3\\2x + 5y \le 12x + 8\end{array} \right.\]
Xem lời giải »
Câu 2:
Biểu diễn miền nghiệm của của bất phương trình hai ẩn 2x − y ≥ 0.
Xem lời giải »
Câu 3:
Cho phương trình 5sin 2x + sin x + cos x + 6 = 0. Trong các phương trình sau, phương trình nào tương đương với phương trình đã cho?
Xem lời giải »
Câu 4:
Chứng minh phương trình sau đây vô nghiệm:
5sin 2x + sin x + cos x + 6 = 0.
Xem lời giải »
Câu 7:
Gọi M, m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số \(f\left( x \right) = \frac{{2x - 1}}{{x + 1}}\) trên đoạn [0; 3]. Tính hiệu M − m.
Xem lời giải »
Câu 8:
Gọi M, m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số \(f\left( x \right) = \frac{{2x + 1}}{{x - 1}}\) trên đoạn [2; 4]. Giá trị của tổng M + m bằng.
Xem lời giải »