X

1000 bài tập trắc nghiệm ôn tập môn Toán có đáp án

Chứng minh với x, y, z dương ta có x^3 / yz + y^3 / xz + x^3 / xy > = x + y + z


Câu hỏi:

Chứng minh với x, y, z dương ta có \(\frac{{{x^3}}}{{yz}} + \frac{{{y^3}}}{{xz}} + \frac{{{z^3}}}{{xy}} \ge x + y + z\).

Trả lời:

Ta có:

\(\frac{{{x^3}}}{{yz}} + \frac{{{y^3}}}{{xz}} + \frac{{{z^3}}}{{xy}} = \frac{{{x^4}}}{{xyz}} + \frac{{{y^4}}}{{xyz}} + \frac{{{z^4}}}{{xyz}} = \frac{{{x^4} + {y^4} + {z^4}}}{{xyz}}\)

Áp dụng bất đẳng thức \({a^2} + {b^2} + {c^2} \ge \frac{{{{\left( {a + b + c} \right)}^2}}}{3}\) ta có

\[{{\rm{x}}^4} + {y^4} + {z^4} \ge \frac{{{{\left( {{x^2} + {y^2} + {z^2}} \right)}^2}}}{3}\]

Suy ra \(\frac{{{x^4} + {y^4} + {z^4}}}{{xyz}} \ge \frac{{{{\left( {{x^2} + {y^2} + {z^2}} \right)}^2}}}{{3xyz}} \ge \frac{{{{\left[ {\frac{{{{\left( {x + y + z} \right)}^2}}}{3}} \right]}^2}}}{{\frac{{{{\left( {x + y + z} \right)}^3}}}{{3.3}}}}\)

\(\frac{{{x^4} + {y^4} + {z^4}}}{{xyz}} \ge \frac{{{{\left( {x + y + z} \right)}^4}}}{{{{\left( {x + y + z} \right)}^3}}} = x + y + z\)

Do đó \(\frac{{{x^3}}}{{yz}} + \frac{{{y^3}}}{{xz}} + \frac{{{z^3}}}{{xy}} \ge x + y + z\)

Vậy \(\frac{{{x^3}}}{{yz}} + \frac{{{y^3}}}{{xz}} + \frac{{{z^3}}}{{xy}} \ge x + y + z\).

Xem thêm bài tập Toán có lời giải hay khác:

Câu 1:

Cho hàm số f(x) có bảng biến thiên như sau

Có bao nhiêu giá trị nguyên của tham số m để phương trình 3f(x^2 - 4x) = m có ít nhất  (ảnh 1)

Có bao nhiêu giá trị nguyên của tham số m để phương trình 3f(x2 – 4x) = m có ít nhất ba nghiệm thực phân biệt thuộc khoảng (0; +∞)?

Xem lời giải »


Câu 2:

Tìm m để \(y = \frac{{{x^2} + m{\rm{x}}}}{{1 - x}}\) có cực trị và khoảng cách giữa 2 điểm cực trị bằng 10.

Xem lời giải »


Câu 3:

Phân tích đa thức thành nhân tử (x + y)3 – ( x – y)3.

Xem lời giải »


Câu 4:

Phân tích đa thức sau thành nhân tử: x2 + 6x + 9.

Xem lời giải »


Câu 5:

Với a, b, c là các số dương, chứng minh rằng

\(\left( {a + b + c} \right)\left( {\frac{1}{a} + \frac{1}{b} + \frac{1}{c}} \right) \ge 9\).

Xem lời giải »


Câu 6:

Tìm giá trị nhỏ nhất của x2 + 3x + 4.

Xem lời giải »


Câu 7:

Cho hàm số f(x) có bảng xét dấu của đạo hàm như sau:

Hàm số y = 3f(x + 2) - x^3 + 3x đồng biến trên khoảng nào dưới đây (ảnh 1)

Hàm số y = 3f(x + 2) – x3 + 3x đồng biến trên khoảng nào dưới đây?

Xem lời giải »


Câu 8:

Tổng các nghiệm của phương trình 3x+1 + 31-x = 10.

Xem lời giải »