X

1000 bài tập trắc nghiệm ôn tập môn Toán có đáp án

Có 5 tem thư khác nhau và 6 bì thư khác nhau. Từ đó người ta muốn chọn ra 3 tem thư


Câu hỏi:

Có 5 tem thư khác nhau và 6 bì thư khác nhau. Từ đó người ta muốn chọn ra 3 tem thư, 3 bì thư và dán 3 tem thư ấy lên 3 bì đã chọn. Hỏi có bao nhiêu cách làm như thế?

Trả lời:

Số cách chọn 3 tem thư trong 5 tem thư khác nhau là: \(C_5^3\) cách.

Số cách chọn 3 bì thư trong 6 bì thư khác nhau là: \(C_6^3\) cách.

Số cách dán tem thư thứ nhất vào 3 bì thư là: \(C_3^1\) cách.

Số cách dán tem thư thứ hai vào 2 bì thư còn lại là: \(C_2^1\) cách.

Số cách dán tem thư thứ hai vào bì thư cuối cùng là: \(C_1^1\) cách.

Vậy có \(\left( {C_5^3.C_6^3} \right).\left( {C_3^1.C_2^1.C_1^1} \right) = 1200\) cách làm thỏa mãn yêu cầu bài toán.

Xem thêm bài tập Toán có lời giải hay khác:

Câu 1:

Tìm tất cả giá trị của tham số m để hàm số y = mx2 – (m + 6)x nghịch biến trên khoảng (–1; +∞).

Xem lời giải »


Câu 2:

Tính bằng cách thuận tiện: \(\frac{1}{4}:0,25 - \frac{1}{8}:0,125 + \frac{1}{2}:0,5 - \frac{1}{{10}}\).

Xem lời giải »


Câu 3:

Xe thứ nhất chở được 25 tấn hàng, xe thứ hai chở 35 tấn hàng, xe thứ ba chở bằng trung bình cộng 3 xe. Hỏi xe thứ 3 chở bao nhiêu tấn hàng?

Xem lời giải »


Câu 4:

A = {1; 2; 3; …; 16}. Bốc ngẫu nhiên 3 phần tử trong A. Tính xác suất để để tổng 3 số bốc ra chia hết cho 3.

Xem lời giải »


Câu 5:

Số các giá trị nguyên âm của tham số m để tập xác định của hàm số \(y = \frac{2}{{x - 2m}} + \sqrt {7m + 1 - 2x} \) chứa đoạn [–1; 1]?

Xem lời giải »


Câu 6:

Tìm giá trị lớn nhất và nhỏ nhất của hàm số y = sin 3x + cos 3x.

Xem lời giải »


Câu 7:

Hai chiếc thuyền khởi hành tại cùng một vị trí A đi thẳng theo hai hướng tạo với nhau 1 góc 30° hỏi sau 2 giờ hai thuyền cách nhau bao xa, biết thuyền B chay với vận tốc 50 km/h, thuyền C chạy với vận tốc 60 km/h.(kết quả làm tròn đến 1 số thập phân)

Xem lời giải »


Câu 8:

Cho hình chóp S.ABCD có đáy ABCD là hình thang, AD // BC và AD = 2BC. Lấy M trên cạnh SA sao cho MA = 2MS.

a) Chứng minh OM // (SCD).

b) Xác định giao điểm N của MD và mặt phẳng (SBC).

Xem lời giải »