Gọi M là tập hợp các số tự nhiên có ba chữ số lập được từ các chữ số 0, 1, 2, 3
Câu hỏi:
Gọi M là tập hợp các số tự nhiên có ba chữ số lập được từ các chữ số 0, 1, 2, 3, 4, 5, 6, 7. Lấy ngẫu nhiên đồng thời 2 số từ tập M. Xác suất để cả 2 số lấy được đều có chữ số hàng chục nhỏ hơn các chữ số hàng trăm và hàng đơn vị là?
Trả lời:
Số lượng số tự nhiên có 3 chữ số lập từ 8 chữ số trên là 7 . 8 . 8 = 448 số
⇒ Tập M có 448 số
Gọi số thỏa mãn đề là \(\overline {abc} \)
Ta có: b < a, b < c
+) b = 0 ⇒ Có 7 cách chọn chữ số a, c
⇒ Có tất cả: 7 . 7 = 49 số cần tìm
+) b = 1 ⇒ Có 6 cách chọn chữ số a, c
+) b = 2 ⇒ Có 5 cách chọn chữ số a, c
+) b = 3 ⇒ Có 4 cách chọn chữ số a, c
+) b = 4 ⇒ Có 3 cách chọn chữ số a, c
+) b = 5 ⇒Có 2 cách chọn chữ số a, c
+) b = 6 ⇒ Có 1 cách chọn chữ số a, c
+) b = 7 ⇒ Có 0 cách chọn chữ số a, c
⇒ Số cách chọn a, b, c thỏa mãn đề là:
7 . 7 + 6 . 6 + 5 . 5 + 4 . 4 + 3 . 3 + 2 . 2 + 1 . 1 = 140
⇒ Xác suất để cả 2 số lấy được đều có chữ số hàng chục nhỏ hơn các chữ số hàng trăm và hàng đơn vị là: \(\frac{{140.139}}{{448.447}} = \frac{{695}}{{7152}}\).