W1llyK!m#5991
Câu hỏi:
Cho A, B, C nằm trên đường thẳng xy theo thứ tự đó. Vẽ đường tròn (O) đi qua B và C. Từ điểm A, vẽ hai tiếp tuyến AM; AN. Gọi E và F lần lượt là trung điểm của BC và MN.
a) Chứng minh AM2 = AN2 = AB.AC.
b) ME cắt (O) tại I. Chứng minh IN // AB.
c) Chứng minh tâm đường tròn ngoại tiếp tam giác OEF nằm trên 1 đường thẳng cố định khi (O) thay đổi nhưng luôn đi qua B và C.
Trả lời:

a) Ta có AM và AN là hai tiếp tuyến cắt nhau
Nên AM = AN
Lại có: ABC là cát tuyến của (O)
Nên AM2 = AN2 = AB.AC
b) Dễ thấy OA vuông góc với MN tại trung điểm MN
⇒ OA vuông góc với MN tại F
Ta có ^OMA=^ONA=^OEA= 90°.
⇒ M, N, E đều thuộc đường tròn đường kính OA
⇒ EMAB nội tiếp
⇒ ^EMN=^EAN(1)
Gọi Nt là tia đối của tia AN
Ta có (vì Nt là tiếp tuyến) (2)
Từ (1) và (2)
⇒ ^EAN=^INt
⇒ IN//AE hay IN//AB
c) Gọi K là giao điểm của BC với MN
Ta có tứ giác OFKE nội tiếp trong đường tròn đường kính OK
Xét ∆AOE và ∆AFK có:
Chung ˆA
^AFK=^AEO=90∘
⇒ ∆AOE ∽ ∆AKF (g.g)
⇒ AOAK=AEAF
Suy ra: AK.AE = AF.AO
Mà AF.AO = AM2 = AB.AC
Suy ra: AK.AE = AB.AC không đổi
Vì AK không đổi nên K cố định
Vậy tâm đường tròn ngoại tiếp tam giác OEF là trung điểm của OK cố định.