X

1000 bài tập trắc nghiệm ôn tập môn Toán có đáp án

W1llyK!m#5991


Câu hỏi:

Cho A, B, C nằm trên đường thẳng xy theo thứ tự đó. Vẽ đường tròn (O) đi qua B và C. Từ điểm A, vẽ hai tiếp tuyến AM; AN. Gọi E và F lần lượt là trung điểm của BC và MN.

a) Chứng minh AM2 = AN2 = AB.AC.

b) ME cắt (O) tại I. Chứng minh IN // AB.

c) Chứng minh tâm đường tròn ngoại tiếp tam giác OEF nằm trên 1 đường thẳng cố định khi (O) thay đổi nhưng luôn đi qua B và C.

Trả lời:

W1llyK!m#5991 (ảnh 1)

a) Ta có AM và AN là hai tiếp tuyến cắt nhau

Nên AM = AN

Lại có: ABC là cát tuyến của (O)

Nên AM2 = AN2 = AB.AC

b) Dễ thấy OA vuông góc với MN tại trung điểm MN

OA vuông góc với MN tại F

Ta có \(\widehat {OMA} = \widehat {ONA} = \widehat {OEA} = \) 90°.

M, N, E đều thuộc đường tròn đường kính OA

EMAB nội tiếp

\(\widehat {EMN} = \widehat {EAN}\)(1)

Gọi Nt là tia đối của tia AN

Ta có (vì Nt là tiếp tuyến) (2)

Từ (1) và (2)

\(\widehat {EAN} = \widehat {INt}\)

IN//AE hay IN//AB

c) Gọi K là giao điểm của BC với MN

Ta có tứ giác OFKE nội tiếp trong đường tròn đường kính OK

Xét ∆AOE và ∆AFK có:

Chung \(\widehat A\)

\(\widehat {AFK} = \widehat {AEO} = 90^\circ \)

∆AOE ∆AKF (g.g)

\(\frac{{AO}}{{AK}} = \frac{{AE}}{{AF}}\)

Suy ra: AK.AE = AF.AO

Mà AF.AO = AM2 = AB.AC

Suy ra: AK.AE = AB.AC không đổi

Vì AK không đổi nên K cố định

Vậy tâm đường tròn ngoại tiếp tam giác OEF là trung điểm của OK cố định.

Xem thêm bài tập Toán có lời giải hay khác:

Câu 1:

Chứng minh rằng 4n3 + 9n2 – 19n – 30 chia hết cho 6 (n ℤ).

Xem lời giải »


Câu 2:

Bạn An nghĩ ra một số có 3 chữ số biết rằng số đó chia hết cho 18 và các chữ số của nó tỉ lệ với 1, 2, 3 và chữ số tận cùng là số chẵn.

Xem lời giải »


Câu 3:

Cho dãy số (un) với un = 2n + 3. Dãy số này có phải cấp số cộng không?

Xem lời giải »


Câu 4:

Cho hai tập hợp A = [m – 4; 1], B = (–3; m]. Tính tổng tất cả các giá trị nguyên của m để A B = B.

Xem lời giải »