Gọi S là tập hợp tất cả các số tự nhiên có 4 chữ số đôi một khác nhau và các chữ số
Câu hỏi:
Gọi S là tập hợp tất cả các số tự nhiên có 4 chữ số đôi một khác nhau và các chữ số thuộc tập hợp {1; 2; 3; 4; 5; 6; 7}. Chọn ngẫu nhiên một số thuộc S, xác suất để số đó không có hai chữ số liên tiếp nào cùng chẵn bằng.
Trả lời:
Có \(A_7^4\) cách tạo ra số có 4 chữ số phân biệt từ X = {1; 2; 3; 4; 5; 6; 7}
Do đó S có \(A_7^4 = 840\) (phần tử).
Chọn một số từ tập S nên n (Ω) = 840.
Gọi biến cố A: "Chọn ngẫu nhiên một số thuộc S, xác suất để số đó không có hai chữ số liên tiếp nào cùng chẵn”.
Nhận thấy không thể có 3 chữ số chẵn hoặc 4 chữ số chẵn vì lúc đó luôn tồn tại hai chữ số chẵn nằm cạnh nhau.
+) Trường hợp 1: Cả 4 chữ số đều lẻ.
Chọn 4 số lẻ từ X và xếp thứ tự có \(A_4^4 = 24\) (số).
+) Trường hợp 2: Có 3 chữ số lẻ, 1 chữ số chẵn.
Chọn 3 chữ số lẻ, 1 chữ số chẵn từ X và xếp thứ tự có \(C_4^3\,.\,C_3^1\,.\,4! = 288\) (số).
+) Trường hợp 3: Có 2 chữ số chẵn, 2 chữ số lẻ.
Có các cách sắp xếp như sau: CLCL; LCLC; CLLC
Với cách sắp xếp CLCL thì có 4.3.3.2 = 72 (số).
Tương tự với hai cách sắp xếp còn lại nên trường hợp này có 3.72 = 216 (số).
Vậy \(P\left( A \right) = \frac{{n\left( A \right)}}{{n\left( \Omega \right)}} = \frac{{24 + 288 + 216}}{{840}} = \frac{{22}}{{35}}\).