Một nhà khoa học nghiên cứu về tác động phối hợp của vitamin A và vitamin B đối
Câu hỏi:
Một nhà khoa học nghiên cứu về tác động phối hợp của vitamin A và vitamin B đối với cơ thể con người. Kết quả như sau:
− Một người có thể tiếp nhận được mỗi ngày không quá 600 đơn vị vitamin A và không quá 500 đơn vị vitamin B.
− Một người mỗi ngày cần từ 400 đến 1 000 đơn vị vitamin cả A và B.
Do tác động phối hợp của hai loại vitamin, mỗi ngày, số đơn vị vitamin B không ít hơn \(\frac{1}{2}\) số đơn vị vitamin A nhưng không nhiều hơn ba lần số đơn vị vitamin A. Biết giá một đơn vị vitamin A là 9 đồng và giá một đơn vị vitamin B là 7,5 đồng. Phương án dùng hai loại vitamin A, B thoả mãn các điều kiện trên để có số tiền phải trả là ít nhất là:
A. 500 đơn vị vitamin A và 500 đơn vị vitamin B.
B. 600 đơn vị vitamin A và 400 đơn vị vitamin B.
C. 600 đơn vị vitamin A và 300 đơn vị vitamin B.
D. 100 đơn vị vitamin A và 300 đơn vị vitamin B.
Trả lời:
Đáp án đúng là: D
Gọi x là số đơn vị vitamin A mỗi người tiếp nhận trong một ngày (x ≥ 0).
Gọi y là số đơn vị vitamin A mỗi người tiếp nhận trong một ngày (y ≥ 0).
Một người có thể tiếp nhận được mỗi ngày không quá 600 đơn vị vitamin A và không quá 500 đơn vị vitamin B nên x ≤ 600 và y ≤ 500.
Một người mỗi ngày cần từ 400 đến 1 000 đơn vị vitamin cả A và B nên:
400 ≤ x + y ≤ 1000
Do tác động phối hợp của hai loại vitamin, mỗi ngày, số đơn vị vitamin B không ít hơn \(\frac{1}{2}\) số đơn vị vitamin A nhưng không nhiều hơn ba lần số đơn vị vitamin A nên:
\(\left\{ \begin{array}{l}y \ge \frac{1}{2}x\\y \le 3{\rm{x}}\end{array} \right.\)
Ta có hệ bất phương trình giữa x và y: \(\left\{ \begin{array}{l}x \ge 0\\y \ge 0\\x \le 600\\y \le 500\\x + y \ge 400\\x + y \le 1000\\y \ge \frac{1}{2}x\\y \le 3{\rm{x}}\end{array} \right.\)
Biểu diễn miền nghiệm của hệ bất phương trình:
− Biểu diễn miền nghiệm D1 của bất phương trình x ≤ 600
+ Vẽ đường thẳng d1: x = 600 trên mặt phẳng tọa độ Oxy
+ Thay x = 0, y = 0 vào bất phương trình ta được 0 ≤ 600 là mệnh đề đúng nên tọa độ điểm O(0; 0) thỏa mãn bất phương trình x ≤ 600
Vậy miền nghiệm D1 của bất phương trình x ≤ 600 là nửa mặt phẳng bờ d1 (kể cả bờ d1) chứa điểm O.
Tương tự ta biểu diễn các miền nghiệm:
− Miền nghiệm D2 của bất phương trình y ≤ 500: là nửa mặt phẳng bờ d2 (kể cả bờ d2: y = 500) chứa điểm O.
− Miền nghiệm D3 của bất phương trình x + y ≥ 400: là nửa mặt phẳng bờ d3 (kể cả bờ d3: x + y = 400) không chứa điểm O.
− Miền nghiệm D4 của bất phương trình x + y ≤ 1000: là nửa mặt phẳng bờ d4 (kể cả bờ d4: x + y = 1000) chứa điểm O.
− Miền nghiệm D5 của bất phương trình \(y \ge \frac{1}{2}x\): là nửa mặt phẳng bờ d5 (kể cả bờ d5: \(y = \frac{1}{2}x\) ) chứa điểm M(0; 50).
− Miền nghiệm D6 của bất phương trình y ≤ 3x: là nửa mặt phẳng bờ d6 (kể cả bờ d6: y = 3x) không chứa điểm M (0; 50).
Ta có đồ thị sau:
Miền nghiệm của hệ bất phương trình là miền của đa giác ABCDEF với: \(A\left( {100;300} \right),B\left( {\frac{{500}}{3};500} \right),C\left( {500;500} \right),D\left( {600;400} \right),E\left( {600;300} \right);F\left( {\frac{{800}}{3};\frac{{400}}{3}} \right)\)
Số tiền trả cho x đơn vị vitamin A và y đơn vị vitamin B là: F(x; y) = 9x + 7,5y
Để có số tiền phải trả là ít nhất thì F(x; y) phải nhỏ nhất
Tại A(100; 300): F = 9.100 + 7,5. 300 = 3150;
Tại \(B\left( {\frac{{500}}{3};500} \right):F = 9.\frac{{500}}{3} + 7,5.500 = 5250\)
Tại C(500; 500): F = 9. 500 + 7,5. 500 = 8250;
Tại D(600, 400): F = 9. 600 + 7,5. 400 = 8400;
Tại E(600, 300): F = 9. 600 + 7,5. 300 = 7650;
Tại \(F\left( {\frac{{800}}{3};\frac{{400}}{3}} \right):F = 9.\frac{{800}}{3} + 7,5.\frac{{400}}{3} = 3400\).
Suy ra F(x; y) nhỏ nhất là 3150 khi x = 100 và y = 300
Do đó mỗi người sẽ dùng 100 đơn vị vitamin A và 300 đơn vị vitamin B để đảm bảo các điều kiện số lượng sử dụng và chi phí phải trả là ít nhất
Vậy ta chọn đáp án D.