Hàm số y = (x^2 - 16)^-5 - ln(24 - 5x - x^2) có tập xác định là: A. (-8; -4) hợp
Câu hỏi:
Hàm số \(y = {\left( {{x^2} - 16} \right)^{ - 5}} - \ln \left( {24 - 5{\rm{x}} - {x^2}} \right)\) có tập xác định là:
A. (–8; –4) ∪ (3; +∞)
B. (–∞;–4) ∪ (3; +∞)
C. (–8; 3) \ {–4}
D. (–4; 3).
Trả lời:
Đáp án đúng là: C
Điều kiện xác định của hàm số \(y = {\left( {{x^2} - 16} \right)^{ - 5}} - \ln \left( {24 - 5{\rm{x}} - {x^2}} \right)\) là:
\(\left\{ \begin{array}{l}{x^2} - 16 \ne 0\\24 - 5{\rm{x}} - {x^2} > 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x \ne \pm 4\\\left( {x - 3} \right)\left( {x + 8} \right) < 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x \ne - 4\\ - 8 < x < 3\end{array} \right.\)
Suy ra D = (–8; 3) \ {–4}
Vậy ta chọn đáp án C.