Rút gọn biểu thức: A = căn bậc hai của 2 + căn bậc hai của 3 + căn bậc hai của 2 - căn bậc hai của 3
Câu hỏi:
Rút gọn biểu thức: \(A = \sqrt {2 + \sqrt 3 } + \sqrt {2 - \sqrt 3 } \).
Trả lời:
Lời giải
\(A = \sqrt {2 + \sqrt 3 } + \sqrt {2 - \sqrt 3 } \)
\( \Rightarrow A\sqrt 2 = \sqrt 2 \,.\,\left( {\sqrt {2 + \sqrt 3 } + \sqrt {2 - \sqrt 3 } } \right)\)
\( = \sqrt {4 + 2\sqrt 3 } + \sqrt {4 - 2\sqrt 3 } \)
\( = \sqrt {{{\sqrt 3 }^2} + 2\sqrt 3 + 1} + \sqrt {{{\sqrt 3 }^2} - 2\sqrt 3 + 1} \)
\( = \sqrt {{{\left( {\sqrt 3 + 1} \right)}^2}} + \sqrt {{{\left( {\sqrt 3 - 1} \right)}^2}} \)
\( = \left| {\sqrt 3 + 1} \right| + \left| {\sqrt 3 - 1} \right|\)
\( = \sqrt 3 + 1 + \sqrt 3 - 1 = 2\sqrt 3 \)
\( \Rightarrow A = \frac{{2\sqrt 3 }}{{\sqrt 2 }} = \sqrt 6 \).
Xem thêm bài tập Toán có lời giải hay khác:
Câu 1:
Cho \(\left\{ \begin{array}{l}a + b \ne 0\\a;\;b \ne 0\end{array} \right.\). Chứng minh rằng: \[\sqrt {\frac{1}{{{a^2}}} + \frac{1}{{{b^2}}} + \frac{1}{{{{\left( {a + b} \right)}^2}}}} = \left| {\frac{1}{a} + \frac{1}{b} - \frac{1}{{a + b}}} \right|\].
Xem lời giải »
Câu 2:
Cho a, b, c là các số hữu tỉ khác 0 thỏa mãn a + b + c = 0. Chứng minh rằng: \(\frac{1}{{{a^2}}} + \frac{1}{{{b^2}}} + \frac{1}{{{c^2}}}\) là bình phương của một số hữu tỉ.
Xem lời giải »
Câu 3:
Cho biểu thức: \[A = \sqrt {\frac{{{{\left( {{x^2} - 3} \right)}^2} + 12{x^2}}}{{{x^2}}}} + \sqrt {{{\left( {x + 2} \right)}^2} - 8x} \].
a) Rút gọn A.
b) Tìm các giá trị nguyên của x để giá trị của A là một số nguyên.
Xem lời giải »
Câu 4:
Cho biểu thức: \(P = \left( { - \frac{2}{3}{x^2}{y^3}{z^2}} \right){\left( { - \frac{1}{2}xy} \right)^3}{\left( {x{y^2}z} \right)^2}\).
a) Rút gọn biểu thức P.
b) Tìm bậc và hệ số biểu thức B.
c) Tìm giá trị các biến để P £ 0.
Xem lời giải »
Câu 5:
Xác định hàm số bậc hai y = ax2 − x + c biết đồ thị hàm số đi qua A(1; −2) và B(2; 3).
Xem lời giải »
Câu 6:
Tìm công thức hàm số bậc hai, biết:
a) Đồ thị hàm số đi qua 3 điểm A(1; −3), B(0; −2), C(2; −10).
b) Đồ thị hàm số có trục đối xứng là đường thẳng x = 3, cắt trục tung tại điểm có tung độ bằng −16 và một trong hai giao điểm với trục hoành có hoành độ là −2.
Xem lời giải »
Câu 7:
Cho \(\left( {x + \sqrt {{x^2} + 3} } \right)\left( {y + \sqrt {{y^2} + 3} } \right) = 3\). Tính giá trị của biểu thức E = x + y.
Xem lời giải »
Câu 8:
Hệ phương trình \(\left\{ \begin{array}{l}{x^2} + \sqrt x = 2y\\{y^2} + \sqrt y = 2x\end{array} \right.\) có bao nhiêu cặp nghiệm (x; y) ¹ (0; 0)?
Xem lời giải »