X

1000 bài tập trắc nghiệm ôn tập môn Toán có đáp án

Tất cả các giá trị của m để bất phương trình 2|x - m| + x^2 + 2 > 2mx thỏa


Câu hỏi:

Tất cả các giá trị của m để bất phương trình 2|x – m| + x² + 2 > 2mx thỏa mãn với mọi x là?

Trả lời:

2|x – m| + x² + 2 > 2mx

2|x – m| + x² + 2 – 2mx > 0

2|x – m| + (x – m)2 – m2 + 2 > 0

|x – m|2 + 2|x – m| + 1 > m2 – 1

(|x – m| + 1)2 > m2 – 1

Để bất phương trình đúng với mọi x

Do (|x – m| + 1)2 ≥ 12 = 1 nên m2 – 1 < 1

Hay m2 < 2

Suy ra: \( - \sqrt 2 < m < \sqrt 2 \).

Xem thêm bài tập Toán có lời giải hay khác:

Câu 1:

Trong mặt phẳng cho 15 điểm phân biệt trong đó không có 3 điểm nào thẳng hàng. Số tam giác có đỉnh là 3 trong số 15 điểm đã cho là?

Xem lời giải »


Câu 2:

Giải phương trình: sin2x – cos2x + 3sinx – cosx – 1 = 0.

Xem lời giải »


Câu 3:

Cho hai tập hợp X = (0; 3] và Y = (a; 4). Tìm tất cả các giá trị của a ≤ 4 để X ∩ Y ≠ .

Xem lời giải »


Câu 4:

Làm theo mẫu: \(\frac{{143}}{{10}} = 14;\frac{3}{{10}} = 0,3\).

Yêu cầu: \(\frac{{126}}{{100}} = ...;\frac{{26}}{{100}} = ...\)

\(\frac{{1246}}{{10}} = ...;\frac{6}{{10}} = ...\)

Xem lời giải »


Câu 5:

Cho tam giác ABC cân tại A có cạnh bên bằng 6 và \(\widehat {BAC} = 120^\circ \). Điểm M thuộc cạnh AB sao cho AM = \(\frac{1}{3}AB\) và N là trung điểm AC. Tính tích vô hướng \[\overrightarrow {BN} .\overrightarrow {CM} \].

Xem lời giải »


Câu 6:

Cho lục giác ABCDEF. Gọi M, N, P, Q, R, S lần lượt là trung điểm các cạnh AB, BC, CD, DE, EF, FA. Chứng minh rằng hai tam giác MPR và NQS có cùng trọng tâm.

Xem lời giải »


Câu 7:

Cho tam giác ABC, lấy M,N,P sao cho \(\overrightarrow {MB} = 3\overrightarrow {MC} ,\overrightarrow {NA} + 3\overrightarrow {NC} = \overrightarrow 0 ,\overrightarrow {PA} + \overrightarrow {PB} = \overrightarrow 0 \)

a) Tính \[\overrightarrow {PM} ,\overrightarrow {PN} \] theo \[\overrightarrow {AB} ,\overrightarrow {AC} \].

b) Chứng minh: M, N, P thẳng hàng.

Xem lời giải »


Câu 8:

Cho 4 điểm A, B, C, D bất kì.

a) Chứng minh: \[\overrightarrow {DA} .\overrightarrow {BC} + \overrightarrow {DB} .\overrightarrow {CA} + \overrightarrow {DC} .\overrightarrow {AB} = \overrightarrow 0 \].

b) Từ đó suy ra một cách chứng minh định lí: "Ba đường cao trong tam giác đồng qui".

Xem lời giải »