X

1000 bài tập trắc nghiệm ôn tập môn Toán có đáp án

Tìm giá trị lớn nhất của biểu thức: A = ab / (a + b) + bc / (b + c) + ac / (a + c)


Câu hỏi:

Tìm giá trị lớn nhất của biểu thức: \[A = \frac{{ab}}{{a + b}} + \frac{{bc}}{{b + c}} + \frac{{ac}}{{a + c}}\].

Biết a + b + c = 6.

Trả lời:

Áp dụng bất đẳng thức Cô-si ta có:

\[{(a + b)^2} \ge 4ab\]\[ \Leftrightarrow \frac{{a + b}}{4} \ge \frac{{ab}}{{a + b}}\,\,\,\,\,(1)\]

\[{(b + c)^2} \ge 4bc\]\[ \Leftrightarrow \frac{{b + c}}{4} \ge \frac{{bc}}{{b + c}}\,\,\,\,\,(2)\]

\[{(c + a)^2} \ge 4ac\]\[ \Leftrightarrow \frac{{c + a}}{4} \ge \frac{{ca}}{{c + a}}\,\,\,\,\,(3)\]

Cộng 3 vế (1); (2) và (3) ta có:

\[\frac{{a + b}}{4} + \frac{{b + c}}{4} + \frac{{c + a}}{4} \ge \frac{{ab}}{{a + b}} + \frac{{bc}}{{b + c}} + \frac{{ca}}{{c + a}}\]

Hay \[\frac{{ab}}{{a + b}} + \frac{{bc}}{{b + c}} + \frac{{ca}}{{c + a}} \le \frac{{(a + b) + (b + c) + (c + a)}}{4}\]

Suy ra \[\frac{{ab}}{{a + b}} + \frac{{bc}}{{b + c}} + \frac{{ca}}{{c + a}} \le \frac{{2(a + b + c)}}{4}\]

Suy ra \[\frac{{ab}}{{a + b}} + \frac{{bc}}{{b + c}} + \frac{{ca}}{{c + a}} \le \frac{{a + b + c}}{2} = \frac{6}{2} = 3\]

Do đó, giá trị lớn nhất của A = 3 Û a = b = c = 2.

Vậy giá trị lớn nhất của A = 3.

Xem thêm bài tập Toán có lời giải hay khác:

Câu 1:

Chứng minh trên đường tròn lượng giác gốc A, cung lượng giác \[\frac{{k2\pi }}{3}\] có các điểm biểu diễn tạo thành tam giác đều.

Xem lời giải »


Câu 2:

Cho hàm số bậc ba y = f(x) có đồ thị như hình vẽ dưới đây. Tìm số nghiệm của phương trình f(x) = 3. 

Cho hàm số bậc ba y = f(x) có đồ thị như hình vẽ dưới đây. Tìm số nghiệm của phương (ảnh 1)

Xem lời giải »


Câu 3:

Chứng minh hai góc kề nhau của một hình bình hành không thể có số đo là 40° và 50°.

Xem lời giải »


Câu 4:

Tìm chu kì của hàm số \[y = \sin \sqrt x \].

Xem lời giải »


Câu 5:

Tính đạo hàm của hàm số: y = (1 + 2x)(2 + 3x2)(3 – 4x3)

Xem lời giải »


Câu 6:

Tính đạo hàm của hàm số sin2x?

Xem lời giải »


Câu 7:

Hai đường tròn phân biệt có cùng bán kính có bao nhiêu tâm đối xứng?

Xem lời giải »


Câu 8:

Trong mặt phẳng Oxy cho đường thẳng d có phương trình: x + y + 2 = 0. Tìm ảnh của đường thẳng d qua phép đối xứng tâm I(1;0).

Xem lời giải »