Tìm giá trị n thuộc N thỏa mãn C 1 (n + 1) + 3C 2 (n + 2) = C 3 (n + 1)
Câu hỏi:
Tìm giá trị n ∈ ℕ thỏa mãn \(C_{n + 1}^1 + 3C_{n + 2}^2 = C_{n + 1}^3\).
Trả lời:
Điều kiện: n ≥ 2 và n ∈ ℕ
Ta có: \(C_{n + 1}^1 + 3C_{n + 2}^2 = C_{n + 1}^3\)
⇔ \[\frac{{\left( {n + 1} \right)!}}{{1!.n!}} + 3.\frac{{\left( {n + 2} \right)!}}{{2!n!}} = \frac{{\left( {n + 1} \right)!}}{{3!\left( {n - 2} \right)!}}\]
⇔ \(n + 1 + 3\frac{{\left( {n + 1} \right)\left( {n + 2} \right)}}{2} = \frac{{\left( {n - 1} \right)n\left( {n + 1} \right)}}{6}\)
Vì n + 1 > 0 nên chia cả 2 vế cho n + 1 ta được:
1 + \(3\frac{{\left( {n + 2} \right)}}{2} = \frac{{\left( {n - 1} \right)n}}{6}\)
⇔ 6 + 3.3(n + 2) = (n – 1)n
⇔ 6 + 9n + 18 = n2 – n
⇔ n2 – 10n – 24 = 0
⇔ \(\left[ \begin{array}{l}n = - 2\left( L \right)\\n = 12\end{array} \right.\)
Vậy n = 12.