Tìm giá trị thực của tham số m để đường thẳng d: y = (2m - 1)x + 3 + m vuông
Câu hỏi:
Tìm giá trị thực của tham số m để đường thẳng d: y = (2m − 1)x + 3 + m vuông góc với đường thẳng đi qua hai điểm cực trị của đồ thị hàm số y = x3 − 3x2 + 1.
Trả lời:
Tập xác định: \[D = \mathbb{R}\]
Ta có: y′ = 3x2 − 6x = 0
\[ \Leftrightarrow \left[ \begin{array}{l}x = 2 \Rightarrow y = - 3\\x = 0 \Rightarrow y = 1\end{array} \right.\]
Þ A(0; 1) và B(2; −3) là hai điểm cực trị của đồ thị hàm số đã cho.
Phương trình đường thẳng đi qua hai điểm cực trị là:
\[\frac{{x - 0}}{{2 - 0}} = \frac{{y - 1}}{{ - 3 - 1}}\]
⇔ −2x = y – 1 ⇔ y = −2x + 1 (d′)
Vì d ⊥ d′ Þ (2m − 1).(−2) = −1
\[ \Leftrightarrow 2m - 1 = \frac{1}{2} \Leftrightarrow m = \frac{3}{4}\]
Vậy \[m = \frac{3}{4}\].