Tìm GTLN, GTNN của hàm số y = (2sin x + cos x + 3) / (2 cos x - sin x + 4)
Câu hỏi:
Tìm GTLN, GTNN của hàm số \(y = \frac{{2\sin x + \cos x + 3}}{{2\cos x - \sin x + 4}}\).
Trả lời:
Tập xác định: 2cosx – sinx + 4 ≠ 0
Suy ra: x ∈ ℝ
Khi đó: y(2cosx – sinx + 4) = 2sinx + cosx + 3
⇔ (2y – 1)cosx – (y + 2)sinx = 3 – 4y (*)
Để (*) có nghiệm thì:
(3 – 4y)2 ≤ (2y – 1)2 + [–(y + 2)]2
⇔ \(\frac{2}{{11}} \le y \le 2\)
Từ đó suy ra: ymax = 2; ymin = \(\frac{2}{{11}}\).
Xem thêm bài tập Toán có lời giải hay khác:
Câu 1:
Cho hình bình hành ABCD. Chứng minh rằng \(\overrightarrow {AB} + 2\overrightarrow {AC} + \overrightarrow {AD} = 3\overrightarrow {AC} \).
Xem lời giải »
Câu 2:
Cho biểu thức \(A = 1 + \left( {\frac{{2a + \sqrt a - 1}}{{1 - a}} - \frac{{2a\sqrt a - \sqrt a + a}}{{1 - a\sqrt a }}} \right).\frac{{a - \sqrt a }}{{2\sqrt a - 1}}\). Rút gọn A.
Xem lời giải »
Câu 4:
Rút gọn phân thức: \(\frac{{\left( {{x^2} + 3x + 2} \right)\left( {{x^2} - 25} \right)}}{{{x^2} + 7x + 10}}\).
Xem lời giải »
Câu 5:
Giải phương trình: \(2{\sin ^2}\frac{x}{2} = \cos 5x + 1\).
Xem lời giải »
Câu 6:
Phân tích đa thức thành nhân tử: 5x2 – 5xy – 10x + 10y.
Xem lời giải »
Câu 7:
Cho biểu thức: \(P = \left( {\frac{{x - y}}{{\sqrt x - \sqrt y }} + \frac{{\sqrt {{x^3}} - \sqrt {{y^3}} }}{{y - x}}} \right):\frac{{{{\left( {\sqrt x - \sqrt y } \right)}^2} + \sqrt {xy} }}{{\sqrt x + \sqrt y }}\) với x ≥ 0, y ≥ 0, x ≠ y.
a) Rút gọn A.
b) Chứng minh rằng A ≥ 0.
Xem lời giải »
Câu 8:
Cho dãy các số chẵn liên tiếp tăng dần. Biết trung bình cộng của 13 số hạng đầu tiên của dãy bằng 24. Tìm số hạng thứ 30 của dãy số đó.
Xem lời giải »