X

1000 bài tập trắc nghiệm ôn tập môn Toán có đáp án

Tìm m để bất phương trình x2 – 2(m + 1) + m2 + 2m ≤ 0 có nghiệm với mọi m ∈ [0; 1].


Câu hỏi:

Tìm m để bất phương trình x2 – 2(m + 1) + m2 + 2m ≤ 0 có nghiệm với mọi m [0; 1].

Trả lời:

Đặt x2 – 2(m + 1) + m2 + 2m = f(x)

Bất phương trình có nghiệm đúng với x [0; 1]

Phương trình f(x) = 0 có hai nghiệm thỏa mãn

x1 ≤ 1 < 2 ≤ x2 ⇔ kf(0)0kf(1)0m2+2m0m210

2m01m11m0

Vậy với −1 ≤ m ≤ 0 thỏa mãn yêu cầu bài toán.

Xem thêm bài tập Toán có lời giải hay khác:

Câu 1:

Cho tam giác ABC vuông tại A có AB < AC. Gọi D và E lần lượt là trung điểm của các cạnh AC và BC, kẻ EF AB tại F.

a) Chứng minh ADEF là hình chữ nhật.

Xem lời giải »


Câu 2:

b) Gọi G là điểm đối xứng với E qua D. Chứng minh tứ giác AECG là hình thoi.

Xem lời giải »


Câu 3:

Cho ∆ABC vuông tại A, có C^=30° . Gọi M và N lần lượt là trung điểm của BC và AC.

a) Tính NMC^ .

Xem lời giải »


Câu 4:

b) Gọi E là điểm đối xứng với M qua N. Chứng minh tứ giác AECM là hình thoi.

Xem lời giải »


Câu 5:

Cho phương trình x2 – 2(m – 1)x + 2m – 5 = 0.

a) Chứng minh phương trình trên luôn có 2 nghiệm phân biệt x1; x2 với mọi m.

Xem lời giải »


Câu 6:

b) Tìm m để hai nghiệm x1; x2 của phương trình có tổng hai nghiệm bằng 6.

Xem lời giải »


Câu 7:

Xác định Parabol y = ax2 + bx + c, biết parabol có đỉnh nằm trên trục hoành và đi qua hai điểm A(0; 1) và B(2; 1).

Xem lời giải »


Câu 8:

Điền vào chỗ trống:

2,5 phút = …. phút … giây.

Xem lời giải »