Tìm nghiệm của phương trình nằm trong [0l 2pi) sin 2x + sin x = 0
Câu hỏi:
Tìm nghiệm của phương trình nằm trong \[\left[ {0;2\pi } \right)\].
sin 2x + sin x = 0
Trả lời:
Ta có: sin 2x + sin x = 0
Û sin 2x = –sin x
Û sin 2x = sin (–x)
\[ \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{2x = - x + k2\pi \,\,\,\,\,}\\{2x = \pi + x + k2\pi }\end{array}} \right.\]
\[ \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{3x = k2\pi \,\,\,\,\,}\\{x = \pi + k2\pi }\end{array}} \right.\]
\[ \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{x = \frac{{k2\pi \,}}{3}\,\,\,\,\,\,\,}\\{x = \pi + k2\pi }\end{array}} \right.\]
Vì \[x \in \left[ {0;2\pi } \right)\] nên tập nghiệm của phương trình là \[\left\{ {0;\frac{{2\pi }}{3};\pi ;\frac{{4\pi }}{3}} \right\}\].
Vậy tập nghiệm của phương trình là \[\left\{ {0;\frac{{2\pi }}{3};\pi ;\frac{{4\pi }}{3}} \right\}\].