Tìm số bộ (x, y, z, t) nguyên không âm thỏa mãn x + y + z + t = 40 và x, y, z, t là các số lẻ.
Câu hỏi:
Tìm số bộ (x, y, z, t) nguyên không âm thỏa mãn x + y + z + t = 40 và x, y, z, t là các số lẻ.
Trả lời:
Đặt , với a, b, c, d là các số nguyên dương.
Suy ra 2(a + b + c + d) – 4 = x + y + z + t = 40.
Do đó a + b + c + d = 22.
Theo nguyên lí “chia kẹo Euler” thì số bộ nghiệm nguyên dương của phương trình trên là .
Vậy có 1330 số bộ (x, y, z, t) thỏa mãn yêu cầu bài toán.
Xem thêm bài tập Toán có lời giải hay khác:
Câu 1:
Cho bốn số nguyên dương a, b, c, d thỏa mãn a2 + b2 = c2 + d2. Chứng minh rằng a + b + c + d là hợp số.
Xem lời giải »
Câu 2:
Cho x + y = 3. Tính giá trị biểu thức:
A = x3 + x2y – 3x2 + xy + y2 – 4y – x + 3.
Xem lời giải »
Câu 3:
Cho hình vuông, nếu giảm cạnh hình vuông đó đi 7 m thì diện tích giảm đi 84 m2. Tính diện tích hình vuông ban đầu.
Xem lời giải »
Câu 6:
Cho phương trình x2 – 5x + 3 = 0 có hai nghiệm x1, x2. Hãy lập phương trình bậc hai có hai nghiệm là y1 = 2x1 – x2; y2 = 2x2 – x1.
Xem lời giải »
Câu 7:
Xác định hệ số a và b để đa thức f(x) = x4 + ax2 + b chia hết cho g(x) = x2 – 3x + 2. Tìm đa thức thương.
Xem lời giải »
Câu 8:
So sánh bằng cách đưa về cùng cơ số: (–0,125)4 và (0,5)12.
Xem lời giải »