Tìm số tự nhiên n để đơn thức A chia hết cho đơn thức B với A = 4xn+1y2 và B = 3x2yn–1.
Câu hỏi:
Tìm số tự nhiên n để đơn thức A chia hết cho đơn thức B với A = 4xn+1y2 và B = 3x2yn–1.
Trả lời:
Để đơn thức A chia hết cho đơn thức B thì:
⇔ ⇔ 2 ≤ n ≤ 3.
Mà n ∈ ℕ nên n = 2 hoặc n = 3
Vậy với n = 2 hoặc n = 3 thì đơn thức A chia hết cho đơn thức B.
Xem thêm bài tập Toán có lời giải hay khác:
Câu 1:
Tìm x nguyên để A = có giá trị là số nguyên.
Xem lời giải »
Câu 4:
Tìm x sao cho x4 + 2x3 + 2x2 + x + 3 là số chính phương.
Xem lời giải »
Câu 5:
Tính diện tích hình chữ nhật biết chiều dài gấp đôi chiều rộng. Nếu tăng chiều dài thêm 5m thì diện tích sẽ tăng thêm 130m.
Xem lời giải »
Câu 6:
Đổi các đơn vị sau: 60g = ... kg; 2,5 tạ = ... g
Xem lời giải »