Tìm tất cả các giá trị của m để hàm số y = mx^3/3 - mx^2 + x - 1 có cực đại
Câu hỏi:
Tìm tất cả các giá trị của m để hàm số có cực đại và cực tiểu.
A.
B.
C. 0 < m < 1
D. m < 0
Trả lời:
Đáp án B
TXĐ: D = R
TH1: hàm số không có cực trị
TH2:
Ta có:
Để hàm số đã cho có cực đại, cực tiểu thì phương trình y’ = 0 phải có 2 nghiệm phân biệt.
Xem thêm bài tập Toán có lời giải hay khác:
Câu 1:
Cho hàm số f (x) có đạo hàm liên tục trên R. Đồ thị hàm số như hình bên. Hàm số có bao nhiêu điểm cực trị thuộc khoảng
Xem lời giải »
Câu 2:
Cho hai hàm số bậc bốn và có các đồ thị như hình dưới đây (2 đồ thị có đúng 3 điểm chung)
Số điểm cực trị của hàm số là:
Xem lời giải »
Câu 3:
Cho hàm số có đạo hàm f'(x) có đồ thị như hình dưới đây
Số điểm cực trị của hàm số là:
Xem lời giải »
Câu 4:
Cho hàm số biết và . Số điểm cực trị của hàm số là:
Xem lời giải »
Câu 5:
Tìm tất cả các giá trị thực của tham số m để hàm số có hai điểm cực trị
Xem lời giải »
Câu 6:
Tìm tất cả các giá trị của m để đồ thị hàm số có 3 điểm cực trị?
Xem lời giải »
Câu 7:
Tìm tất cả các giá trị thực của m để hàm số có cực đại, cực tiểu
Xem lời giải »
Câu 8:
Cho hàm số . Tất cả các giá trị của m để hàm số có 1 điểm cực trị là:
Xem lời giải »