X

1000 bài tập trắc nghiệm ôn tập môn Toán có đáp án

Tìm tất cả các giá trị thực của tham số m để phương trình x^2 - 5x + 7 + 2m = 0


Câu hỏi:

Tìm tất cả các giá trị thực của tham số m để phương trình x2 – 5x + 7 + 2m = 0 có nghiệm thuộc đoạn [1; 5]

A. \(\frac{3}{4} \le m \le 7\)

B. \( - \frac{7}{2} \le m \le - \frac{3}{8}\)

C. \(3 \le m \le 7\)

D. \(\frac{3}{8} \le m \le \frac{7}{2}\).

Trả lời:

Đáp án đúng là: B

Ta có: x2 – 5x + 7 + 2m = 0

x2 – 5x + 7 = – 2m                         (*)

Phương trình (*) là phương trình hoành độ giao điểm của Parabol (P): x2 – 5x + 7 và đường thẳng y = – 2m (song song hoặc trùng với trục hoành)

Ta có bảng biến thiên của hàm số x2 – 5x + 7 trên đoạn [1; 5] như sau:

Tìm tất cả các giá trị thực của tham số m để phương trình x^2 - 5x + 7 + 2m = 0  (ảnh 1)

Dựa vào bảng biến thiên ta thấy x [1; 5] thì \(y \in \left[ {\frac{3}{4};7} \right]\)

Do đó để phương trình (*) có nghiệm x [1; 5]

\( \Leftrightarrow \frac{3}{4} \le - 2m \le 7 \Leftrightarrow \frac{{ - 3}}{8} \ge m \ge - \frac{7}{2}\)

Vậy ta chọn đáp án B.

Xem thêm bài tập Toán có lời giải hay khác:

Câu 1:

Cho lục giác ABCDEF. Có bao nhiêu vectơ khác vectơ \(\overrightarrow 0 \) có điểm đầu và điểm cuối là đỉnh của lục giác.

Xem lời giải »


Câu 2:

Phân tích đa thức thành nhân tử: x2 + 2y2 – 3xy + x – 2y.

Xem lời giải »


Câu 3:

Với a, b là các số thực dương tùy ý thỏa mãn log3a – 2log9b = 2, mệnh đề nào dưới đây đúng?

Xem lời giải »


Câu 4:

Tìm x, biết: x3 – 16x = 0.

Xem lời giải »


Câu 5:

Chứng minh rằng: Nếu P là số nguyên tố lớn hơn 3 thì (P – 1)(P + 1) chia hết cho 24.

Xem lời giải »


Câu 6:

Với các số thực dương a, b, c chứng minh rằng: a3 + b3 + c3 ≥ ab2 + bc2 + ca2.

Xem lời giải »


Câu 7:

Phân tích đa thức sau thành nhân tử: 2ab2 – a2b – b3.

Xem lời giải »


Câu 8:

Chứng minh bất đẳng thức: a2 + b2 ≥ 2ab.

Xem lời giải »