Tìm x biết: 2x(3x + 5) - x(6x - 1) = 33
Câu hỏi:
Tìm x biết: 2x(3x + 5) – x(6x – 1) = 33.
Trả lời:
2x(3x + 5) – x(6x – 1) = 33
⇔ 6x2 + 10x – 6x2 + x – 33 = 0
⇔ 11x = 33
⇔ x = 33 : 11
⇔ x = 3
Vậy x = 3.
Câu hỏi:
Tìm x biết: 2x(3x + 5) – x(6x – 1) = 33.
Trả lời:
2x(3x + 5) – x(6x – 1) = 33
⇔ 6x2 + 10x – 6x2 + x – 33 = 0
⇔ 11x = 33
⇔ x = 33 : 11
⇔ x = 3
Vậy x = 3.
Câu 1:
Trong mặt phẳng cho 15 điểm phân biệt trong đó không có 3 điểm nào thẳng hàng. Số tam giác có đỉnh là 3 trong số 15 điểm đã cho là?
Câu 3:
Cho hai tập hợp X = (0; 3] và Y = (a; 4). Tìm tất cả các giá trị của a ≤ 4 để X ∩ Y ≠ ∅.
Câu 4:
Làm theo mẫu: \(\frac{{143}}{{10}} = 14;\frac{3}{{10}} = 0,3\).
Yêu cầu: \(\frac{{126}}{{100}} = ...;\frac{{26}}{{100}} = ...\)
\(\frac{{1246}}{{10}} = ...;\frac{6}{{10}} = ...\)
Câu 5:
Tất cả các giá trị của m để bất phương trình 2|x – m| + x² + 2 > 2mx thỏa mãn với mọi x là?
Câu 6:
Cho tam giác ABC cân tại A có cạnh bên bằng 6 và \(\widehat {BAC} = 120^\circ \). Điểm M thuộc cạnh AB sao cho AM = \(\frac{1}{3}AB\) và N là trung điểm AC. Tính tích vô hướng \[\overrightarrow {BN} .\overrightarrow {CM} \].
Câu 7:
Cho lục giác ABCDEF. Gọi M, N, P, Q, R, S lần lượt là trung điểm các cạnh AB, BC, CD, DE, EF, FA. Chứng minh rằng hai tam giác MPR và NQS có cùng trọng tâm.
Câu 8:
Cho tam giác ABC, lấy M,N,P sao cho \(\overrightarrow {MB} = 3\overrightarrow {MC} ,\overrightarrow {NA} + 3\overrightarrow {NC} = \overrightarrow 0 ,\overrightarrow {PA} + \overrightarrow {PB} = \overrightarrow 0 \)
a) Tính \[\overrightarrow {PM} ,\overrightarrow {PN} \] theo \[\overrightarrow {AB} ,\overrightarrow {AC} \].
b) Chứng minh: M, N, P thẳng hàng.