Tính b, c biết a/b = b/c = c/a, a = 2005 và a + b + c ¹ 0.
Câu hỏi:
Tính b, c biết \(\frac{a}{b} = \frac{b}{c} = \frac{c}{a},\;a = 2005\) và a + b + c ¹ 0. Trả lời:
Lời giải
ĐK: b, c ¹ 0
Do \(\frac{a}{b} = \frac{b}{c} = \frac{c}{a},\;a = 2005\) nên suy ra \(\frac{{2005}}{b} = \frac{b}{c} = \frac{c}{{2005}}\)
\[ \Rightarrow \left\{ \begin{array}{l}{b^2} = 2005c\\{c^2} = 2005b\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{b^2} = 2005c\\{\left( {\frac{b}{c}} \right)^2} = \frac{c}{b}\end{array} \right.\]
\( \Leftrightarrow \left\{ \begin{array}{l}{b^2} = 2005c\\{\left( {\frac{b}{c}} \right)^3} = 1\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{b^2} = 2005c\\\frac{b}{c} = 1\end{array} \right.\)
\[ \Leftrightarrow \left\{ \begin{array}{l}{b^2} = 2005b\\b = c\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}b = c = 2005\;\;\;\left( {TM} \right)\\b = c = 0\;\;\;\;\;\;\;\;\;\left( l \right)\end{array} \right.\]
Vậy b = c = 2005
Xem thêm bài tập Toán có lời giải hay khác:
Câu 1:
Cho hệ bất phương trình sau, biểu diễn hình học tập nghiệm:
\[\left\{ \begin{array}{l}2x - y \le 3\\2x + 5y \le 12x + 8\end{array} \right.\]
Xem lời giải »
Câu 2:
Biểu diễn miền nghiệm của của bất phương trình hai ẩn 2x − y ≥ 0.
Xem lời giải »
Câu 3:
Cho phương trình 5sin 2x + sin x + cos x + 6 = 0. Trong các phương trình sau, phương trình nào tương đương với phương trình đã cho?
Xem lời giải »
Câu 4:
Chứng minh phương trình sau đây vô nghiệm:
5sin 2x + sin x + cos x + 6 = 0.
Xem lời giải »
Câu 5:
Cho a, b, c thỏa mãn điều kiện a.b.c = 2005. Chứng minh rằng biểu thức sau không phụ thuộc a, b, c:
\(A = \frac{{2005a}}{{ab + 2005a + 2005}} + \frac{{2005b}}{{bc + 2005b + 2005}} + \frac{c}{{ac + c + 1}}\)
Xem lời giải »
Câu 6:
Giải phương trình: \[\frac{{\cos x - \sqrt 3 \sin x}}{{2\sin x - 1}} = 0\].
Xem lời giải »
Câu 7:
Giải phương trình: \[\frac{{\sqrt 3 \sin x - \cos x}}{{2\sin x - 1}} = 0\].
Xem lời giải »
Câu 8:
Cho tam giác ABC. Chứng minh:
\(\tan \left( {\frac{A}{2}} \right)\tan \left( {\frac{B}{2}} \right) + \tan \left( {\frac{B}{2}} \right)\tan \left( {\frac{C}{2}} \right) + \tan \left( {\frac{C}{2}} \right)\tan \left( {\frac{A}{2}} \right) = 1\).
Xem lời giải »