X

1000 bài tập trắc nghiệm ôn tập môn Toán có đáp án

Trong không gian với hệ tọa độ Oxyz, cho hai điểm A (-1; 2; 4) và B (0; 1; 5). Gọi


Câu hỏi:

Trong không gian với hệ tọa độ Oxyz, cho hai điểm A (–1; 2; 4) và B (0; 1; 5). Gọi (P) là mặt phẳng đi qua A sao cho khoảng cách từ B đến (P) là lớn nhất. Khi đó, khoảng cách d từ O đến mặt phẳng (P) bằng bao nhiêu?

A. \[{\rm{d}} = - \frac{{\sqrt 3 }}{3}\]

B. \[{\rm{d}} = \sqrt 3 \]

C. \[{\rm{d}} = \frac{1}{3}\]

D. \[{\rm{d}} = \frac{1}{{\sqrt 3 }}\].

Trả lời:

Đáp án đúng là: D

Trong không gian với hệ tọa độ Oxyz, cho hai điểm A (-1; 2; 4) và B (0; 1; 5). Gọi (ảnh 1)

Ta có \(\overrightarrow {AB} = \left( {1; - 1;1} \right) \Rightarrow \left| {\overrightarrow {AB} } \right| = \sqrt 3 \)

Gọi H là hình chiếu của B trên mặt phẳng (P) 

Khi đó ta có BH là khoảng cách từ điểm B đến mặt phẳng (P) 

Ta luôn có BH ≤ AB do đó khoảng cách từ B đến mặt phẳng (P) lớn nhất khi H ≡ A 

Khi đó \(\overrightarrow {AB} = \left( {1; - 1;1} \right)\) là véc tơ pháp tuyến của mặt phẳng (P)

Suy ra phương trình mặt phẳng (P) đi qua A (–1; 2; 4) và có véc tơ pháp tuyến \(\overrightarrow {AB} = \left( {1; - 1;1} \right)\) là x – y + z – 1 = 0

Do đó khoảng cách từ điểm O đến mặt phẳng (P) là:

\(d\left( {O,\left( P \right)} \right) = \frac{{\left| { - 1} \right|}}{{\sqrt {{1^2} + {{\left( { - 1} \right)}^2} + {1^2}} }} = \frac{1}{{\sqrt 3 }}\)

Vậy ta chọn đáp án D.

Xem thêm bài tập Toán có lời giải hay khác:

Câu 1:

Cho lục giác ABCDEF. Có bao nhiêu vectơ khác vectơ \(\overrightarrow 0 \) có điểm đầu và điểm cuối là đỉnh của lục giác.

Xem lời giải »


Câu 2:

Phân tích đa thức thành nhân tử: x2 + 2y2 – 3xy + x – 2y.

Xem lời giải »


Câu 3:

Với a, b là các số thực dương tùy ý thỏa mãn log3a – 2log9b = 2, mệnh đề nào dưới đây đúng?

Xem lời giải »


Câu 4:

Tìm x, biết: x3 – 16x = 0.

Xem lời giải »


Câu 5:

Tìm tất cả các giá trị thực của tham số m để phương trình x2 – 5x + 7 + 2m = 0 có nghiệm thuộc đoạn [1; 5]

Xem lời giải »


Câu 6:

Chứng minh rằng: Nếu P là số nguyên tố lớn hơn 3 thì (P – 1)(P + 1) chia hết cho 24.

Xem lời giải »


Câu 7:

Với các số thực dương a, b, c chứng minh rằng: a3 + b3 + c3 ≥ ab2 + bc2 + ca2.

Xem lời giải »


Câu 8:

Phân tích đa thức sau thành nhân tử: 2ab2 – a2b – b3.

Xem lời giải »