Trong mặt phẳng Oxy cho đường thẳng d có phương trình 2x - 6y + 5 = 0, điểm I
Câu hỏi:
Trong mặt phẳng Oxy cho đường thẳng d có phương trình 2x − 6y + 5 = 0, điểm I(2; −4). Viết phương trình đường thẳng d' là ảnh của d qua phép đối xứng tâm I.
Trả lời:
Lấy M(x;y) thuộc d, phép đối xứng tâm I(x0; y0) biến M(x;y) thành M'(x',y') thì
\[\left\{ \begin{array}{l}x = 2{x_0} - x' = 4 - x'\\y = 2{y_0} - y' = - 8 - y'\end{array} \right.\]
Thay vào phương trình d ta được:
2(4 − x') − 6(−8 − y') + 5 = 0
⇔ 2x' − 6y' − 61 = 0 hay 2x − 6y − 61 = 0
Vậy phương trình đường thẳng d' là ảnh của d qua phép đối xứng tâm I là 2x − 6y − 61 = 0.