Trong mặt phẳng tọa độ Oxy, phép quay tâm O góc quay 90 độ biến điểm M(-1; 2)
Câu hỏi:
Trong mặt phẳng tọa độ Oxy, phép quay tâm O góc quay 90° biến điểm M(−1; 2) thành điểm M'. Tìm tọa độ điểm M'.
Trả lời:
Có M' = Q(O; 90°) (M) \[ \Leftrightarrow \left\{ \begin{array}{l}\left( {OM;\;OM'} \right) = 90^\circ \\OM' = OM\end{array} \right.\]
Phương trình đường thẳng OM' qua O, vuông góc với OM nên OM' có dạng x − 2y = 0
Gọi M'(2a; a)
Do OM' = OM Þ 4a2 + a2 = (−1)2 + 22
\( \Leftrightarrow \left[ \begin{array}{l}a = 1\\a = - 1\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}M'\left( {2;\;1} \right)\\M'\left( { - 2;\; - 1} \right)\end{array} \right.\)
Vậy M'(−2; −1) là ảnh của M qua phép quay góc 90°.