Từ điểm I nằm ngoài đường tròn (O), vẽ cát tuyến cắt đường tròn tại A và B (IA < IB). Các tiếp tuyến tại A và B cắt nhau tại M. OM cắt AB tại K. a) Chứng minh K là trung điểm của AB.
Câu hỏi:
Từ điểm I nằm ngoài đường tròn (O), vẽ cát tuyến cắt đường tròn tại A và B (IA < IB). Các tiếp tuyến tại A và B cắt nhau tại M. OM cắt AB tại K.
a) Chứng minh K là trung điểm của AB.
Trả lời:
a) Ta có MA, MB là hai tiếp tuyến của (O) cắt nhau tại M.
Suy ra MA = MB.
Khi đó M nằm trên đường trung trực của đoạn thẳng AB (1)
Lại có OA = OB = R.
Suy ra O nằm trên đường trung trực của đoạn thẳng AB (2)
Từ (1), (2), suy ra MO là đường trung trực của đoạn thẳng AB.
Do đó MO ⊥ AB tại K và K là trung điểm AB.
Xem thêm bài tập Toán có lời giải hay khác:
Câu 1:
Cho tam giác ABC vuông tại A có AB < AC. Gọi D và E lần lượt là trung điểm của các cạnh AC và BC, kẻ EF ⊥ AB tại F.
a) Chứng minh ADEF là hình chữ nhật.
Xem lời giải »
Câu 2:
b) Gọi G là điểm đối xứng với E qua D. Chứng minh tứ giác AECG là hình thoi.
Xem lời giải »
Câu 3:
Cho ∆ABC vuông tại A, có . Gọi M và N lần lượt là trung điểm của BC và AC.
a) Tính .
Xem lời giải »
Câu 4:
b) Gọi E là điểm đối xứng với M qua N. Chứng minh tứ giác AECM là hình thoi.
Xem lời giải »
Câu 6:
Một hình bình hành ABCD có diện tích 350 cm2, biết độ dài đường cao AH = 35 cm. Tính độ dài cạnh AB.
Xem lời giải »
Câu 7:
Chứng minh rằng:
Nếu p và p2 + 8 là hai số nguyên tố thì p2 + 2 cũng là số nguyên tố.
Xem lời giải »
Câu 8:
Chứng minh rằng. nếu p và 8p2 + 1 là hai số nguyên tố lẻ thì 8p2 + 2p + 1 là số nguyên tố.
Xem lời giải »