ứng minh đẳng thức sau: (x + y + z)^3 = x^3 + y^3 + z^3 + 3(x + y)(y + z)
Câu hỏi:
Chứng minh đẳng thức sau: (x + y + z)3 = x3 + y3 + z3 + 3(x + y)(y + z)(z + x).
Trả lời:
Ta có:
x3 + y3 + z3 + 3(x + y)(y + z)(z + x)
= x3 + y3 + z3 + (3xy + 3xz + 3y2 + 3yz)(z + x)
= x3 + y3 + z3 + 3xyz + 3x2y + 3xz2 + 3x2z + 3y2z + 3y2x + 3yz2 + 3xyz
= x3 + y3 + z3 + 3x2y + 3xz2 + 3x2z + 3y2z + 3y2x + 3yz2 + 6xyz
= x3 + 3x2y + 3y2x + y3 + 3x2z + 6xyz + 3y2z + 3xz2 + 3yz2 + z3
= (x + y)3 + 3z(x2 + 2xy + y2) + 3z2(x + y) + z3
= (x + y)3 + 3z(x + y)2 + 3z2(x + y) + z3
= (x + y + z)3
Vậy (x + y + z)3 = x3 + y3 + z3 + 3(x + y)(y + z)(z + x).
Xem thêm bài tập Toán có lời giải hay khác:
Câu 1:
Cho lục giác ABCDEF. Có bao nhiêu vectơ khác vectơ \(\overrightarrow 0 \) có điểm đầu và điểm cuối là đỉnh của lục giác.
Xem lời giải »
Câu 2:
Phân tích đa thức thành nhân tử: x2 + 2y2 – 3xy + x – 2y.
Xem lời giải »
Câu 3:
Với a, b là các số thực dương tùy ý thỏa mãn log3a – 2log9b = 2, mệnh đề nào dưới đây đúng?
Xem lời giải »
Câu 6:
Giải phương trình: \(\left( {x + 1} \right)\left( {x + 4} \right) - 3\sqrt {{x^2} + 5{\rm{x}} + 2} = 6\).
Xem lời giải »
Câu 7:
Cho khối chóp S.ABCD có đáy là hình chữ nhật, \[AB = a,\;\] \(A{\rm{D}} = a\sqrt 3 ,\) SA vuông góc với đáy và mặt phẳng (SBC) tạo với đáy một góc 60°. Tính thể tích V của khối chóp S.ABCD.
Xem lời giải »
Câu 8:
Tính giá trị nhỏ nhất của hàm số \(y = 3{\rm{x}} + \frac{4}{{{x^2}}}\) trên khoảng (0; +∞).
Xem lời giải »