X

1000 bài tập trắc nghiệm ôn tập môn Toán có đáp án

Với các chữ số 0, 1, 2, 3, 4, 5 có thể lập được bao nhiêu số gồm 8 chữ số, trong


Câu hỏi:

Với các chữ số 0, 1, 2, 3, 4, 5 có thể lập được bao nhiêu số gồm 8 chữ số, trong đó chữ số 1 có mặt 3 lần, mỗi chữ số khác có mặt đúng 1 lần.

Trả lời:

Do chữ số 1 có mặt 3 lần nên ta coi như tìm các số thỏa mãn đề bài được tạo nên từ 8 số 0, 1, 1, 1, 2, 3, 4, 5

Với các chữ số 0, 1, 2, 3, 4, 5 có thể lập được bao nhiêu số gồm 8 chữ số, trong (ảnh 1)

Chọn số cho ô đầu tiên có 7 cách.

Chọn số cho ô thứ hai có 7 cách.


Chọn số cho ô thứ 8 có 1 cách.

Suy ra có 7.7.6.5.4.3.2.1 = 7.7! cách xếp 8 chữ số 0, 1, 1, 1, 2, 3, 4, 5 vào 8 ô.

Mặt khác chữ số 1 lặp lại 3 lần nên số cách xếp là: \(\frac{{7\,.\,7!}}{{3!}} = 5880\) số

Xem thêm bài tập Toán có lời giải hay khác:

Câu 1:

Có bao nhiêu số tự nhiên có 7 chữ số khác nhau từng đôi một, trong đó chữ  số 2 đứng liền giữa hai chữ số 1 và 3?

Xem lời giải »


Câu 2:

Có bao nhiêu số tự nhiên gồm 7 chữ số thỏa mãn số đó có 3 số chữ chẵn và số đứng sau lớn hơn số đứng trước?

Xem lời giải »


Câu 3:

Tìm giá trị lớn nhất M và giá trị nhỏ nhất m của hàm số y = f (x) = −x2 − 4x + 3 trên đoạn [0; 4].

Xem lời giải »


Câu 4:

Tìm giá trị lớn nhất M của hàm số y = x4 − 2x2 + 3 trên đoạn \(\left[ {0;\;\sqrt 3 } \right]\).

Xem lời giải »


Câu 5:

Từ các chữ số 0; 1; 2; 3; 4 có thể lập được bao nhiêu số:Có 8 chữ số trong đó chữ số 1có mặt 3 lần, chữ số 4 xuất hiện 2 lần; các chữ số còn lại có mặt đúng một lần.

Xem lời giải »


Câu 6:

Xác định các hệ số a và b để Parabol (P): y = ax2 + 4x − b có đỉnh I (−1; −5).

Xem lời giải »


Câu 7:

Xác định parabol y = ax2 – bx + 1 trong mỗi trường hợp sau:

a) Có đỉnh I(−2; 37).

b) Có trục đối xứng là x = −1 và tung độ của đỉnh bằng 5.

Xem lời giải »


Câu 8:

Cho số phức \(z = 1 + \sqrt 3 i\). Tính \(\frac{1}{z}\).

Xem lời giải »