X

1000 bài tập trắc nghiệm ôn tập môn Toán có đáp án

a) Viết phương trình đường thẳng biết đồ thị của nó cắt trục tung tại điểm có tung độ bằng 4 và cắt trục hoành tại điểm có hoành độ bằng –3. b) Viết phương trình đường thẳng (d) biết (d) có


Câu hỏi:

a) Viết phương trình đường thẳng biết đồ thị của nó cắt trục tung tại điểm có tung độ bằng 4 và cắt trục hoành tại điểm có hoành độ bằng –3.

b) Viết phương trình đường thẳng (d) biết (d) có hệ số góc là –2 và đi qua điểm A(–1; 5).

Trả lời:

Lời giải

a) Phương trình đường thẳng cần tìm có dạng: y = ax + b (a ≠ 0).

Vì đường thẳng cắt trục tung tại điểm có tung độ bằng 4 nên 4 = a.0 + b b = 4.

Vì đường thẳng cắt trục hoành tại điểm có hoành độ bằng –3 nên 0 = –3a + b.

–3a + 4 = 0.

\( \Leftrightarrow a = \frac{4}{3}\) (nhận).

Vậy phương trình đường thẳng cần tìm là \(y = \frac{4}{3}x + 4\).

b) Phương trình đường thẳng (d) cần tìm có dạng: y = ax + b (a ≠ 0).

Đường thẳng (d) có hệ số góc là –2 nên ta có a = –2.

Vì (d) đi qua điểm A(–1; 5) nên 5 = a.(–1) + b.

5 = 2 + b.

b = 3.

Vậy phương trình đường thẳng (d): y = –2x + 3.

Xem thêm bài tập Toán có lời giải hay khác:

Câu 1:

Cho hàm số f(x) = mx + m – 1. Tìm tất cả các giá trị thực của tham số m để phương trình f(x) = 0 có nghiệm thuộc (3; 4).

Xem lời giải »


Câu 2:

Tính diện tích hình thang ABCD, biết AB // CD, \(\widehat D = 90^\circ \), \(\widehat C = 38^\circ \), AB = 3,5 cm, AD = 3,1 cm.

Xem lời giải »


Câu 3:

Cho hình bình hành ABCD có AC vuông góc AD, AD = 3,5 cm, \(\widehat D = 60^\circ \). Tính diện tích hình bình hành ABCD.

Xem lời giải »


Câu 4:

Một cửa hàng giảm giá 10% so với giá bán bình thường nhưng vẫn lãi 8% so với giá vốn. Hỏi nếu không giảm giá thì lãi bao nhiêu phần trăm so với giá vốn?

Xem lời giải »


Câu 5:

Cho hàm số y = (m – 1)x + m (1) (với m là tham số, m ≠ 0).

a) Tìm m để đồ thị hàm số (1) đi qua điểm M(1; 3).

b) Tìm m để đồ thị hàm số cắt trục tung tại điểm có tung độ bằng 4. Vẽ đồ thị hàm số với m tìm được.

Xem lời giải »


Câu 6:

Tìm dư trong phép chia đa thức f(x) = 1 + x2 + x4 + x6 + ... + x100 cho x + 1.

Xem lời giải »


Câu 7:

Cho đường thẳng d có phương trình y = (m – 1)x + 2. Tìm m để khoảng cách từ gốc tọa độ O đến đường thẳng d là lớn nhất.

Xem lời giải »


Câu 8:

Tìm m để khoảng cách từ gốc tọa độ O đến đường thẳng d: y = mx – m + 1 (m ≠ 0) lớn nhất.

Xem lời giải »