a) Viết phương trình đường thẳng biết đồ thị của nó cắt trục tung tại điểm có tung độ bằng 4 và cắt trục hoành tại điểm có hoành độ bằng –3. b) Viết phương trình đường thẳng (d) biết (d) có
Câu hỏi:
a) Viết phương trình đường thẳng biết đồ thị của nó cắt trục tung tại điểm có tung độ bằng 4 và cắt trục hoành tại điểm có hoành độ bằng –3.
b) Viết phương trình đường thẳng (d) biết (d) có hệ số góc là –2 và đi qua điểm A(–1; 5).
Trả lời:
Lời giải
a) Phương trình đường thẳng cần tìm có dạng: y = ax + b (a ≠ 0).
Vì đường thẳng cắt trục tung tại điểm có tung độ bằng 4 nên 4 = a.0 + b ⇔ b = 4.
Vì đường thẳng cắt trục hoành tại điểm có hoành độ bằng –3 nên 0 = –3a + b.
⇔ –3a + 4 = 0.
\( \Leftrightarrow a = \frac{4}{3}\) (nhận).
Vậy phương trình đường thẳng cần tìm là \(y = \frac{4}{3}x + 4\).
b) Phương trình đường thẳng (d) cần tìm có dạng: y = ax + b (a ≠ 0).
Đường thẳng (d) có hệ số góc là –2 nên ta có a = –2.
Vì (d) đi qua điểm A(–1; 5) nên 5 = a.(–1) + b.
⇔ 5 = 2 + b.
⇔ b = 3.
Vậy phương trình đường thẳng (d): y = –2x + 3.
Xem thêm bài tập Toán có lời giải hay khác:
Câu 1:
Cho hàm số f(x) = mx + m – 1. Tìm tất cả các giá trị thực của tham số m để phương trình f(x) = 0 có nghiệm thuộc (3; 4).
Xem lời giải »
Câu 2:
Tính diện tích hình thang ABCD, biết AB // CD, \(\widehat D = 90^\circ \), \(\widehat C = 38^\circ \), AB = 3,5 cm, AD = 3,1 cm.
Xem lời giải »
Câu 3:
Cho hình bình hành ABCD có AC vuông góc AD, AD = 3,5 cm, \(\widehat D = 60^\circ \). Tính diện tích hình bình hành ABCD.
Xem lời giải »
Câu 4:
Một cửa hàng giảm giá 10% so với giá bán bình thường nhưng vẫn lãi 8% so với giá vốn. Hỏi nếu không giảm giá thì lãi bao nhiêu phần trăm so với giá vốn?
Xem lời giải »
Câu 5:
Cho hàm số y = (m – 1)x + m (1) (với m là tham số, m ≠ 0).
a) Tìm m để đồ thị hàm số (1) đi qua điểm M(1; 3).
b) Tìm m để đồ thị hàm số cắt trục tung tại điểm có tung độ bằng 4. Vẽ đồ thị hàm số với m tìm được.
Xem lời giải »
Câu 6:
Tìm dư trong phép chia đa thức f(x) = 1 + x2 + x4 + x6 + ... + x100 cho x + 1.
Xem lời giải »
Câu 7:
Cho đường thẳng d có phương trình y = (m – 1)x + 2. Tìm m để khoảng cách từ gốc tọa độ O đến đường thẳng d là lớn nhất.
Xem lời giải »
Câu 8:
Tìm m để khoảng cách từ gốc tọa độ O đến đường thẳng d: y = mx – m + 1 (m ≠ 0) lớn nhất.
Xem lời giải »