Biết rằng phương trình [log1/3 (9x))^]^2 + log3 x^2 / 81 - 7= 0 có hai nghiệm
Câu hỏi:
Biết rằng phương trình [log13(9x)]2+log3x281−7=0 có hai nghiệm phân biệt x1; x2. Tính P = x1x2.
A. P=193
B. P = 36
C. P = 93
D. P = 38.
Trả lời:
Đáp án đúng là: A
Điều kiện x > 0. Ta có:
[log13(9x)]2+log3x281−7=0⇔(2+log3x)2+2log3x−4−7=0⇔log23x+6log3x−7=0⇔[log3x=1log3x=−7⇔[x=3x=3−7⇒P=3−6=193
Vậy ta chọn đáp án A.