X

1000 bài tập trắc nghiệm ôn tập môn Toán có đáp án

Số nghiệm thuộc đoạn [-pi; 2pi] của phương trình 2f(sinx) + 3 = 0 là: A. 4 B. 6 C. 3


Câu hỏi:

Cho hàm số f(x) có bảng biến thiên như sau:

Số nghiệm thuộc đoạn [-pi; 2pi] của phương trình 2f(sinx) + 3 = 0 là: A. 4 B. 6 C. 3 (ảnh 1)

Số nghiệm thuộc đoạn [–π; 2π] của phương trình 2f(sinx) + 3 = 0 là:

A. 4

B. 6

C. 3

D. 8.

Trả lời:

Đáp án đúng là: B

Phương trình \(2f(\sin x) + 3 = 0 \Leftrightarrow f(\sin x) = - \frac{3}{2}\quad (*)\) có nghiệm trên [–π; 2π]

Đường thẳng \(y = - \frac{3}{2}\) cắt đồ thị hàm số \(y = f(\sin x)\) tại các điểm trên [–π; 2π]

Đặt \(\sin x = t \Rightarrow x \in [ - \pi ;2\pi ] \Rightarrow t \in [ - 1;1]\)

Ta có bảng biến thiên:

Số nghiệm thuộc đoạn [-pi; 2pi] của phương trình 2f(sinx) + 3 = 0 là: A. 4 B. 6 C. 3 (ảnh 2)

Dựa vào bảng biến thiên ta có: đường thẳng \(y = - \frac{3}{2}\) cắt đồ thị hàm số y = f(t) tại hai điểm phân biệt

Ta có \((*) \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{\sin x = {t_1} \in (0;1)}\\{\sin x = {t_2} \in ( - 1;0)}\end{array}} \right.\)

Số nghiệm thuộc đoạn [-pi; 2pi] của phương trình 2f(sinx) + 3 = 0 là: A. 4 B. 6 C. 3 (ảnh 3)

Dựa vào đồ thị hàm số ta thấy:

+) Đường thẳng y = t1 cắt đồ thị hàm số y = sinx tại hai điểm phân biệt trong [–π; 2π]

+) Đường thẳng y = t1 cắt đồ thị hàm số y = sinx tại bốn điểm phân biệt trong [–π; 2π]

Như vậy đường thẳng \(y = - \frac{3}{2}\) cắt đồ thị hàm số \(y = f(\sin x)\) tại 6 điểm phân biệt trên [–π; 2π]

Suy ra phương trình đã cho có 6 nghiệm phân biệt

Vậy đáp án cần chọn là B.

Xem thêm bài tập Toán có lời giải hay khác:

Câu 1:

Trong khôn gian với hệ tọa độ Oxyz, cho các điểm A(2; 0; 0), B(0; 3; 0), C(0; 0; –4). Gọi H là trực tâm tam giác ABC. Tìm phương trình tham số của đường thẳng OH trong các phương án sau:

Xem lời giải »


Câu 2:

Từ các số 1, 2, 3, 4, 5, 6, 7 có thể lập được bao nhiêu số tự nhiên chẵn gồm 5 chữ số đôi một khác nhau, đồng thời chia hết cho 9.

Xem lời giải »


Câu 3:

Bất phương trình nào sau đây tương đương với bất phương trình x + 5 > 0?

Xem lời giải »


Câu 4:

Cho biết \(\tan \alpha = \frac{2}{3}\). Tính giá trị biểu thức \(M = \frac{{{{\sin }^3}\alpha + 3c{\rm{o}}{{\rm{s}}^3}\alpha }}{{27{{\sin }^3}\alpha - 25co{{\rm{s}}^3}\alpha }}\).

Xem lời giải »


Câu 5:

Cho hai tập khác rỗng A = (m – 1; 4]; B = (–2; 2m + 2), m ℝ. Tìm m để A ∩ B ≠ .

Xem lời giải »


Câu 6:

Cho hai đường thẳng d và d’ song song có bao nhiêu phép tịnh tiến biến đường thẳng d thành đường thẳng d’:

Xem lời giải »


Câu 7:

Cho \(\widehat {xOy} = 30^\circ \). Gọi A và B là hai điểm di động lần lượt trên Ox và Oy sao cho AB = 1. Độ dài lớn nhất của đoạn OB bằng:

Xem lời giải »