X

1000 bài tập trắc nghiệm ôn tập môn Toán có đáp án

Cho 2 vectơ a, vecto b thỏa mãn: |vecto a| = 4; |vecto b| = 3; |vecto a - vecto b| = 4


Câu hỏi:

Cho 2 vectơ \(\overrightarrow a ,\overrightarrow b \) thỏa mãn: \(\left| {\overrightarrow a } \right| = 4;\left| {\overrightarrow b } \right| = 3;\left| {\overrightarrow a - \overrightarrow b } \right| = 4\). Gọi α là góc giữa hai vectơ \(\overrightarrow a ,\overrightarrow b \). Tìm cosα?

Trả lời:

Ta có: \(\left| {\overrightarrow a - \overrightarrow b } \right| = 4 \Rightarrow {\left| {\overrightarrow a - \overrightarrow b } \right|^2} = 16\)

\({\overrightarrow a ^2} + {\overrightarrow b ^2} - 2\overrightarrow a \overrightarrow b = 16\)

\[2\overrightarrow a .\overrightarrow b = {\overrightarrow a ^2} + {\overrightarrow b ^2} - 16 = {4^2} + {3^2} - 16 = 9\]

\[\overrightarrow a .\overrightarrow b = \frac{9}{2}\]

Suy ra: \[\cos \left( {\overrightarrow a ,\overrightarrow b } \right) = \frac{{\overrightarrow a .\overrightarrow b }}{{\left| {\overrightarrow a } \right|.\left| {\overrightarrow b } \right|}} = \frac{{\frac{9}{2}}}{{3.4}} = \frac{3}{8}\].

Xem thêm bài tập Toán có lời giải hay khác:

Câu 1:

Cho hình bình hành ABCD. Chứng minh rằng \(\overrightarrow {AB} + 2\overrightarrow {AC} + \overrightarrow {AD} = 3\overrightarrow {AC} \).

Xem lời giải »


Câu 2:

Cho biểu thức \(A = 1 + \left( {\frac{{2a + \sqrt a - 1}}{{1 - a}} - \frac{{2a\sqrt a - \sqrt a + a}}{{1 - a\sqrt a }}} \right).\frac{{a - \sqrt a }}{{2\sqrt a - 1}}\). Rút gọn A.

Xem lời giải »


Câu 3:

Tìm x biết: (4x – 3)2 – 3x(3 – 4x) = 0.

Xem lời giải »


Câu 4:

Rút gọn phân thức: \(\frac{{\left( {{x^2} + 3x + 2} \right)\left( {{x^2} - 25} \right)}}{{{x^2} + 7x + 10}}\).

Xem lời giải »


Câu 5:

Cho 2 hàm số y = (k – 2)x + k và y = (k + 3)x – k. Với giá trị nào của k thì đồ thị của 2 hàm số cắt nhau tại 1 điểm:

a) Trên trục tung.

b) Trên trục hoành.

Xem lời giải »


Câu 6:

Cho hình vuông ABCD có AC cắt BD tại O. Gọi E và F theo thứ tự là các điểm đối xứng với O qua AD và BC.

a) Chứng minh rằng các tứ giác AODE,BOCF là hình vuông.

b) Nối EC cắt DF tại I. Chứng minh rằng OI CD.

c) Biết diện tích hình lục giác ABFCDE = 6 .Tính độ dài các cạnh của hình vuông ABCD.

d) Lấy K là 1 điểm bất kì trên BC. Gọi G là trọng tâm của tam giác AIK. Chứng minh G thuộc 1 đường thẳng cố định khi K di chuyển trên BC.

Xem lời giải »


Câu 7:

Cho tam giác ABC cân tại A có \(\widehat A = 70^\circ \). Tính các góc \(\widehat B,\widehat C\).

Xem lời giải »


Câu 8:

Cho đường thẳng d cắt đường tròn (O;R) tại 2 điểm C, D. M là 1 điểm thuộc d và nằm ngoài (O;R) (MC < MD). Vẽ 2 tiếp tuyến MA, MB với (O;R). H là trung điểm của CD. Đường thẳng AB cắt OH tại E. Chứng minh ED là tiếp tuyến của (O; R).

Xem lời giải »