X

1000 bài tập trắc nghiệm ôn tập môn Toán có đáp án

Cho a, b, c > 0. Chứng minh rằng: căn bậc hai của a^3/5a^2 + ( b + c)^2  + căn bậc hai của b^3/5b^2 + ( c + a)^2 + căn bậc hai của c^3/5c^2 + ( a + b)^2  nhỏ hơn bằng a + b + c/3


Câu hỏi:

Cho a, b, c > 0. Chứng minh rằng:

\(\sqrt {\frac{{{a^3}}}{{5{a^2} + {{\left( {b + c} \right)}^2}}}} + \sqrt {\frac{{{b^3}}}{{5{b^2} + {{\left( {c + a} \right)}^2}}}} + \sqrt {\frac{{{c^3}}}{{5{c^2} + {{\left( {a + b} \right)}^2}}}} \le \sqrt {\frac{{a + b + c}}{3}} \).

Trả lời:

Lời giải

Áp dụng BĐT Bunhiacopxki, ta có:

\({\left( {\sqrt {\frac{{{a^3}}}{{5{a^2} + {{\left( {b + c} \right)}^2}}}} + \sqrt {\frac{{{b^3}}}{{5{b^2} + {{\left( {c + a} \right)}^2}}}} + \sqrt {\frac{{{c^3}}}{{5{c^2} + {{\left( {a + b} \right)}^2}}}} } \right)^2}\)

\( = {\left( {\sqrt a \sqrt {\frac{{{a^2}}}{{5{a^2} + {{\left( {b + c} \right)}^2}}}} + \sqrt b \sqrt {\frac{{{b^2}}}{{5{b^2} + {{\left( {c + a} \right)}^2}}}} + \sqrt c \sqrt {\frac{{{c^2}}}{{5{c^2} + {{\left( {a + b} \right)}^2}}}} } \right)^2}\)

\( \le \left( {a + b + c} \right)\left( {\frac{{{a^2}}}{{5{a^2} + {{\left( {b + c} \right)}^2}}} + \frac{{{b^2}}}{{5{b^2} + {{\left( {c + a} \right)}^2}}} + \frac{{{c^2}}}{{5{c^2} + {{\left( {a + b} \right)}^2}}}} \right)\)

Ta cần chứng minh: \(\frac{{{a^2}}}{{5{a^2} + {{\left( {b + c} \right)}^2}}} + \frac{{{b^2}}}{{5{b^2} + {{\left( {c + a} \right)}^2}}} + \frac{{{c^2}}}{{5{c^2} + {{\left( {a + b} \right)}^2}}} \le \frac{1}{3}\).

Không mất tính tổng quát ta giả sử

\(a + b + c = 1;\;a \ge b \ge c \Rightarrow a \ge \frac{1}{3} \ge c\)

BĐT trở thành

• Xét \(c \ge \frac{1}{8}\), thì ta có:

\(9 - \sum {\frac{{27{a^2}}}{{6{a^2} - 2a + 1}} = } \sum {\left( {12a - 1 - \frac{{27{a^2}}}{{6{a^2} - 2a + 1}}} \right) = } \sum {\frac{{{{\left( {3a - 1} \right)}^2}\left( {8a - 1} \right)}}{{6{a^2} - 2a + 1}} \ge 0} \)

• Xét \(c \le \frac{1}{8}\), thì ta có:

\(6\left( {VT - VP} \right) = \frac{{2a - 1}}{{6{a^2} - 2a + 1}} + \frac{{2b - 1}}{{6{b^2} - 2b + 1}} + \frac{{2c - 1}}{{6{c^2} - 2c + 1}}\)

\( = \frac{{a - b - c}}{{6{a^2} - 2a + 1}} + \frac{{b - c - a}}{{6{b^2} - 2b + 1}} + \frac{{6{c^2}}}{{6{c^2} - 2c + 1}}\)

\( = \frac{{2{{\left( {a - b} \right)}^2}\left( {3c - 2} \right)}}{{\left( {6{a^2} - 2a + 1} \right)\left( {6{b^2} - 2b + 1} \right)}} + c\left( {\frac{{6c}}{{6{c^2} - 2c + 1}} - \frac{1}{{6{a^2} - 2a + 1}} - \frac{1}{{6{b^2} - 2b + 1}}} \right)\)

Ta cần chứng=  minh \(\frac{1}{{6{a^2} - 2a + 1}} - \frac{1}{{6{b^2} - 2b + 1}} \ge \frac{{6c}}{{6{c^2} - 2c + 1}}\)

Do \(c \le \frac{1}{8} \Rightarrow \frac{{6c}}{{6{c^2} - 2c + 1}} \le 1\)

Suy ra cần chứng minh \(\frac{1}{{6{a^2} - 2a + 1}} - \frac{1}{{6{b^2} - 2b + 1}} \ge 1\)

+) Xét \(b \le \frac{1}{3} \Rightarrow \frac{1}{{6{b^2} - 2b + 1}} \ge 1\)

+) Xét \(b \ge \frac{1}{3}\). Áp dụng BĐT Cauchy ta có:

4 ³ 6(a2 + b2) − 2(a + b) + 2

Hay [2(a + b) + c](a + b + c) ³ 3(a2 + b2)

Do \(b \ge \frac{1}{3}\) Þ 3b ³ a Þ [2(a + b) + c](a + b + c) ³ 2(a + b)2

= 3(a + b)2 + 4ab − a2 − b2 ³ 3(a2 + b2) + 3ab − a2 ³ 3(a2 + b2).

Vậy BĐT được chứng minh.

Xem thêm bài tập Toán có lời giải hay khác:

Câu 1:

Cho \(\left\{ \begin{array}{l}a + b \ne 0\\a;\;b \ne 0\end{array} \right.\). Chứng minh rằng: \[\sqrt {\frac{1}{{{a^2}}} + \frac{1}{{{b^2}}} + \frac{1}{{{{\left( {a + b} \right)}^2}}}} = \left| {\frac{1}{a} + \frac{1}{b} - \frac{1}{{a + b}}} \right|\].

Xem lời giải »


Câu 2:

Cho a, b, c là các số hữu tỉ khác 0 thỏa mãn a + b + c = 0. Chứng minh rằng: \(\frac{1}{{{a^2}}} + \frac{1}{{{b^2}}} + \frac{1}{{{c^2}}}\) là bình phương của một số hữu tỉ.

Xem lời giải »


Câu 3:

Cho biểu thức: \[A = \sqrt {\frac{{{{\left( {{x^2} - 3} \right)}^2} + 12{x^2}}}{{{x^2}}}} + \sqrt {{{\left( {x + 2} \right)}^2} - 8x} \].

a) Rút gọn A.

b) Tìm các giá trị nguyên của x để giá trị của A là một số nguyên.

Xem lời giải »


Câu 4:

Cho biểu thức: \(P = \left( { - \frac{2}{3}{x^2}{y^3}{z^2}} \right){\left( { - \frac{1}{2}xy} \right)^3}{\left( {x{y^2}z} \right)^2}\).

a) Rút gọn biểu thức P.

b) Tìm bậc và hệ số biểu thức B.

c) Tìm giá trị các biến để P £ 0.

Xem lời giải »


Câu 5:

Cho x2 + y2 + xy = 1. Tìm GTNN, GTLN của A = x2 − xy + 2y2.

Xem lời giải »


Câu 6:

Cho x, y không âm thỏa mãn: x2 + y2 = 2. Tìm GTNN, GTLN của

\(A = \frac{{{x^2} + {y^2} + 1}}{{xy + 1}}\).

Xem lời giải »


Câu 7:

Cho tam giác vuông ABC vuông tại A có BC = 20 cm; AC = 12 cm. Quay tam giác ABC cạnh AB ta được một hình nón có thể tích là bao nhiêu?

Xem lời giải »


Câu 8:

Tam giác ABC vuông tại A, có AB = c, AC = b. Gọi ℓa là độ dài đoạn phân giác trong góc \(\widehat {BAC}\). Tính ℓa theo b và c.

Xem lời giải »