X

1000 bài tập trắc nghiệm ôn tập môn Toán có đáp án

Cho a, b, c là các số dương tùy ý. Chứng minh rằng: bc/b + c + 2a + ca/c + a + 2b + ab/a + b + 2c nhỏ hơn bằng a + b + c/4


Câu hỏi:

Cho a, b, c là các số dương tùy ý. Chứng minh rằng:

\[\frac{{bc}}{{b + c + 2a}} + \frac{{ca}}{{c + a + 2b}} + \frac{{ab}}{{a + b + 2c}} \le \frac{{a + b + c}}{4}\].

Trả lời:

Lời giải

Ta có: \(b + c + 2a = \left( {a + b} \right) + \left( {a + c} \right) \ge 2\sqrt {\left( {a + b} \right)\left( {a + c} \right)} \)

\( \Rightarrow \left( {a + b} \right)\left( {a + c} \right) \le \frac{{{{\left( {a + b + a + c} \right)}^2}}}{4}\)

\( \Leftrightarrow \frac{1}{{a + b + a + c}} \le \frac{{a + b + a + c}}{{4\left( {a + b} \right)\left( {a + c} \right)}}\)

\( \Leftrightarrow \frac{1}{{a + b + a + c}} \le \frac{1}{4}\left( {\frac{1}{{a + b}} + \frac{1}{{a + c}}} \right)\)

\[ \Rightarrow \frac{{bc}}{{b + c + 2a}} \le \frac{{bc}}{4}\left( {\frac{1}{{a + b}} + \frac{1}{{a + c}}} \right)\]

Tương tự ta có:

\[\frac{{ca}}{{c + a + 2b}} \le \frac{{ca}}{4}\left( {\frac{1}{{b + c}} + \frac{1}{{a + b}}} \right)\]

\[\frac{{ab}}{{a + b + 2c}} \le \frac{{ab}}{4}\left( {\frac{1}{{a + c}} + \frac{1}{{b + c}}} \right)\]

Suy ra \(VT = \frac{{bc}}{{b + c + 2a}} + \frac{{ca}}{{c + a + 2b}} + \frac{{ab}}{{a + b + 2c}}\)

\( \le \frac{{bc}}{4}\left( {\frac{1}{{a + b}} + \frac{1}{{a + c}}} \right) + \frac{{ca}}{4}\left( {\frac{1}{{b + c}} + \frac{1}{{a + b}}} \right) + \frac{{ab}}{4}\left( {\frac{1}{{a + c}} + \frac{1}{{b + c}}} \right)\)

\( = \frac{1}{4}\left[ {\frac{1}{{a + b}}\left( {bc + ac} \right) + \frac{1}{{a + c}}\left( {bc + ab} \right) + \frac{1}{{b + c}}\left( {ac + ab} \right)} \right]\)

\( = \frac{1}{4}\left[ {\frac{1}{{a + b}}\,.\,c\left( {b + a} \right) + \frac{1}{{a + c}}\,.\,b\left( {c + a} \right) + \frac{1}{{b + c}}\,.\,a\left( {c + b} \right)} \right]\)

\( = \frac{1}{4}\left( {c + b + a} \right) = \frac{{a + b + c}}{4} = VP\).

Vậy \[\frac{{bc}}{{b + c + 2a}} + \frac{{ca}}{{c + a + 2b}} + \frac{{ab}}{{a + b + 2c}} \le \frac{{a + b + c}}{4}\] (đpcm).

Xem thêm bài tập Toán có lời giải hay khác:

Câu 1:

Cho \(\left\{ \begin{array}{l}a + b \ne 0\\a;\;b \ne 0\end{array} \right.\). Chứng minh rằng: \[\sqrt {\frac{1}{{{a^2}}} + \frac{1}{{{b^2}}} + \frac{1}{{{{\left( {a + b} \right)}^2}}}} = \left| {\frac{1}{a} + \frac{1}{b} - \frac{1}{{a + b}}} \right|\].

Xem lời giải »


Câu 2:

Cho a, b, c là các số hữu tỉ khác 0 thỏa mãn a + b + c = 0. Chứng minh rằng: \(\frac{1}{{{a^2}}} + \frac{1}{{{b^2}}} + \frac{1}{{{c^2}}}\) là bình phương của một số hữu tỉ.

Xem lời giải »


Câu 3:

Cho biểu thức: \[A = \sqrt {\frac{{{{\left( {{x^2} - 3} \right)}^2} + 12{x^2}}}{{{x^2}}}} + \sqrt {{{\left( {x + 2} \right)}^2} - 8x} \].

a) Rút gọn A.

b) Tìm các giá trị nguyên của x để giá trị của A là một số nguyên.

Xem lời giải »


Câu 4:

Cho biểu thức: \(P = \left( { - \frac{2}{3}{x^2}{y^3}{z^2}} \right){\left( { - \frac{1}{2}xy} \right)^3}{\left( {x{y^2}z} \right)^2}\).

a) Rút gọn biểu thức P.

b) Tìm bậc và hệ số biểu thức B.

c) Tìm giá trị các biến để P £ 0.

Xem lời giải »


Câu 5:

Cho a, b, c là số thực dương thỏa mãn a + b + c = 2. Tìm giá trị lớn nhất của: \[P = \frac{{ab}}{{\sqrt {ab + 2c} }} + \frac{{bc}}{{\sqrt {bc + 2a} }} + \frac{{ca}}{{\sqrt {ca + 2b} }}\].

Xem lời giải »


Câu 6:

Giải phương trình: sin2 2x − sin 2x − 2 = 0.

Xem lời giải »


Câu 7:

Giải phương trình: sin 2x + sin2 x = 1

Xem lời giải »


Câu 8:

Hãy chọn câu đúng: 

Xem lời giải »