Cho ab + bc + ca = 1. Khi đó (a^2 + 1)(b^2 + 1)(c^2 + 1) bằng A. (a + c + b)^2(a + b)^2; B. (a + c)^2(a + b)^2(b + c); C. (a + c)^2 + (a + b)^2 + (b + c)^2; D. (a + c)^2(a + b)^2(b + c)^2
Câu hỏi:
Cho ab + bc + ca = 1. Khi đó (a2 + 1)(b2 + 1)(c2 + 1) bằng
A. (a + c + b)2(a + b)2;
B. (a + c)2(a + b)2(b + c); C. (a + c)2 + (a + b)2 + (b + c)2;
D. (a + c)2(a + b)2(b + c)2.
Trả lời:
Lời giải
Đáp án đúng là: D
Vì ab + bc + ca = 1 nên
(a2 + 1)(b2 + 1)(c2 + 1)
= (a2 + ab + bc + ca)(b2 + ab + bc + ca)(c2 + ab + bc + ca)
= [a(a + b) + c(a + b)][b(a + b) + c(a + b)][b(a + c) + c(a + c)]
= (a + b)(a + c)(a + b)(b + c)(a + c)(b + c)
= (a + c)2(a + b)2(b + c)2
Vậy (a2 + 1)(b2 + 1)(c2 + 1) bằng (a + c)2(a + b)2(b + c)2
Chọn đáp án D.
Xem thêm bài tập Toán có lời giải hay khác:
Câu 1:
Cho hệ bất phương trình sau, biểu diễn hình học tập nghiệm:
\[\left\{ \begin{array}{l}2x - y \le 3\\2x + 5y \le 12x + 8\end{array} \right.\]
Xem lời giải »
Câu 2:
Biểu diễn miền nghiệm của của bất phương trình hai ẩn 2x − y ≥ 0.
Xem lời giải »
Câu 3:
Cho phương trình 5sin 2x + sin x + cos x + 6 = 0. Trong các phương trình sau, phương trình nào tương đương với phương trình đã cho?
Xem lời giải »
Câu 4:
Chứng minh phương trình sau đây vô nghiệm:
5sin 2x + sin x + cos x + 6 = 0.
Xem lời giải »
Câu 5:
Cho a; b; c đôi một khác nhau. Tính giá trị biểu thức:
\(P = \frac{{{a^2}}}{{\left( {a - b} \right)\left( {a - c} \right)}} + \frac{{{b^2}}}{{\left( {b - c} \right)\left( {b - a} \right)}} + \frac{{{c^2}}}{{\left( {c - b} \right)\left( {c - a} \right)}}\).
Xem lời giải »
Câu 6:
Tính tổng tất cả các nghiệm của phương trình 32x − 2.3x + 2 + 27 = 0.
Xem lời giải »
Câu 7:
Tìm các nghiệm của phương trình \[\frac{{{3^{2x - 6}}}}{{27}} = {\left( {\frac{1}{3}} \right)^x}\].
Xem lời giải »
Câu 8:
Tìm giá trị của tham số m để hàm số \[y = \frac{{ - mx - 5m + 4}}{{x + m}}\] nghịch biến trên từng khoảng xác định.
Xem lời giải »