Cho ∆ABC vuông tại A (AB < AC). Kẻ BD là phân giác củagóc ABD (D thuộc AC)
Câu hỏi:
Cho ∆ABC vuông tại A (AB < AC). Kẻ BD là phân giác của \(\widehat {ABD}\) (D thuộc AC), trên cạnh BC lấy điểm E sao cho AB = BE.
a) Chứng minh ∆ABD = ∆EBD.
b) So sánh AD và DC.
c) Đường thẳng ED cắt đường thẳng AB tại F, gọi S là trung điểm của FC. Chứng minh ba điểm B, D, S thẳng hàng.
Trả lời:
a) Tam giác ABD và EBD có:
\(\widehat {ABD} = \widehat {EBD}\)(BD là phân giác)
Cạnh BA = BE (gt)
Cạnh BD chung
⇒ Tam giác ABD = EBD (c–g–c) (*)
b) Từ (*) ⇒ \(\widehat {BED} = \widehat {BAD} = 90^\circ \)
⇒ Tam giác EDC vuông tại E ⇒ Cạnh huyền DC > cạnh góc vuông DE (1)
mà từ (*) ⇒ DE = AD (2)
Từ (1) và (2) ⇒ DC > AD
c) Tam giác BFC có hai đường cao CA và FE cắt nhau tại D
⇒ D là trực tâm
Đường BD đi qua trực tâm D nên là đường cao thứ ba của tam giác BFC. Đồng thời BD cũng là phân giác của góc FBC
⇒ Tam giác FBC cân tại B nên đường cao, phân giác cũng là trung tuyến.
Vậy BD đi qua trung điểm S của FC.
Vậy B, D, S thẳng hàng.