Cho alpha là góc tù và sin alpha = 4/5. Tính giá trị của biểu thức A = 2sin alpha
Câu hỏi:
Cho a là góc tù và \[\sin \alpha = \frac{4}{5}\]. Tính giá trị của biểu thức: A = 2sin a – cos a.
Trả lời:
Ta có: sin2 α + cos2 α = 1
Þ cos2 α = 1 − sin2 α
\[{\cos ^2}\alpha = 1 - {\left( {\frac{4}{5}} \right)^2} = 1 - \frac{{16}}{{25}} = \frac{9}{{25}}\]
\[ \Rightarrow \left[ {\begin{array}{*{20}{c}}{{{\cos }^2}\alpha = {{\left( {\frac{3}{5}} \right)}^2}}\\{{{\cos }^2}\alpha = {{\left( { - \frac{3}{5}} \right)}^2}}\end{array}} \right.\]
\[ \Rightarrow \left[ {\begin{array}{*{20}{c}}{\cos \alpha = \frac{3}{5}}\\{\cos \alpha = - \frac{3}{5}}\end{array}} \right.\]
Mà α là góc tù Þ cos α < 0
\[\cos \alpha = - \frac{3}{5}\]
\[ \Rightarrow A = 2\sin \alpha - \cos \alpha = 2 \cdot \frac{4}{5} - \left( { - \frac{3}{5}} \right) = \frac{8}{5} + \frac{3}{5} = \frac{{11}}{5}\]
Vậy \[A = \frac{{11}}{5} \cdot \]