X

1000 bài tập trắc nghiệm ôn tập môn Toán có đáp án

Cho alpha là góc tù và sin alpha = 4/5. Tính giá trị của biểu thức A = 2sin alpha


Câu hỏi:

Cho a là góc tù và \[\sin \alpha = \frac{4}{5}\]. Tính giá trị của biểu thức: A = 2sin a cos a.

Trả lời:

Ta có: sin2 α + cos2 α = 1

Þ cos2 α = 1 − sin2 α

\[{\cos ^2}\alpha = 1 - {\left( {\frac{4}{5}} \right)^2} = 1 - \frac{{16}}{{25}} = \frac{9}{{25}}\]

\[ \Rightarrow \left[ {\begin{array}{*{20}{c}}{{{\cos }^2}\alpha = {{\left( {\frac{3}{5}} \right)}^2}}\\{{{\cos }^2}\alpha = {{\left( { - \frac{3}{5}} \right)}^2}}\end{array}} \right.\]

\[ \Rightarrow \left[ {\begin{array}{*{20}{c}}{\cos \alpha = \frac{3}{5}}\\{\cos \alpha = - \frac{3}{5}}\end{array}} \right.\]

Mà α là góc tù Þ cos α < 0

\[\cos \alpha = - \frac{3}{5}\]

\[ \Rightarrow A = 2\sin \alpha - \cos \alpha = 2 \cdot \frac{4}{5} - \left( { - \frac{3}{5}} \right) = \frac{8}{5} + \frac{3}{5} = \frac{{11}}{5}\]

Vậy \[A = \frac{{11}}{5} \cdot \]

Xem thêm bài tập Toán có lời giải hay khác:

Câu 1:

Chứng minh trên đường tròn lượng giác gốc A, cung lượng giác \[\frac{{k2\pi }}{3}\] có các điểm biểu diễn tạo thành tam giác đều.

Xem lời giải »


Câu 2:

Cho hàm số bậc ba y = f(x) có đồ thị như hình vẽ dưới đây. Tìm số nghiệm của phương trình f(x) = 3. 

Cho hàm số bậc ba y = f(x) có đồ thị như hình vẽ dưới đây. Tìm số nghiệm của phương (ảnh 1)

Xem lời giải »


Câu 3:

Chứng minh hai góc kề nhau của một hình bình hành không thể có số đo là 40° và 50°.

Xem lời giải »


Câu 4:

Tìm chu kì của hàm số \[y = \sin \sqrt x \].

Xem lời giải »


Câu 5:

Cho a là góc nhọn và \[\sin \alpha = \frac{3}{5}\]. Tính giá trị của biểu thức:

A = 3sin a 2cos a.

Xem lời giải »


Câu 6:

Cho \[\sin \alpha = \frac{2}{3}\]. Tính cos α, tan α biết 0 < α < 90º.

Xem lời giải »


Câu 7:

Tính các tỉ số lượng giác sau:

a) cos 60º

b) tan 30º

c) sin 45º

d) cot 135º

Xem lời giải »


Câu 8:

Tìm tất cả các giá trị thực của tham số m để hàm số y = log(x2 − 2mx + 4) có tập xác định là \[\mathbb{R}\].

Xem lời giải »