Cho bất phương trình 4 căn bậc hai (x + 1) (3 - x) < = x^2 - 2x + m - 3. Xác định
Câu hỏi:
Cho bất phương trình \[4\sqrt {(x + 1)(3 - x)} \le {x^2} - 2x + m - 3\]. Xác định m để bất phương trình nghiệm đúng với ∀x ∈ [−1; 3].
Trả lời:
Với ∀x ∈ [−1; 3] đặt \[t = 4\sqrt {(x + 1)(3 - x)} \le \frac{{x + 1 + 3 - x}}{2} = 2\]
Þ t Î [0;2]
Khi đó bất phương trình:
\[4\sqrt {(x + 1)(3 - x)} \le {x^2} - 2x + m - 3\] trở thành 4t £ −t2 + m
Û t2 + 4t £ m
Với t Î [0;2] Þ 0 £ t2 + 4t £ 12
Þ m ≥ 12
Vậy m ≥ 12 thỏa mãn đề bài.
Xem thêm bài tập Toán có lời giải hay khác:
Câu 1:
Chứng minh trên đường tròn lượng giác gốc A, cung lượng giác \[\frac{{k2\pi }}{3}\] có các điểm biểu diễn tạo thành tam giác đều.
Xem lời giải »
Câu 2:
Cho hàm số bậc ba y = f(x) có đồ thị như hình vẽ dưới đây. Tìm số nghiệm của phương trình f(x) = 3.
Xem lời giải »
Câu 3:
Chứng minh hai góc kề nhau của một hình bình hành không thể có số đo là 40° và 50°.
Xem lời giải »
Câu 5:
Cho hàm số bậc nhất y = (2k – 1)x + 3 – k (k là hệ số) có đồ thị là đường thẳng (d). Tìm giá trị của k để đồ thị hàm số cắt đường thẳng (d’): y = 2x + 1 tại điểm có hoành độ bằng –2.
Xem lời giải »
Câu 6:
Cho hàm số bậc nhất y = (2k – 1)x + 3 – k (k là hệ số) có đồ thị là đường thẳng (d). Tìm giá trị của k để đồ thị hàm số song song với đường thẳng (m):
y = 0,5x – 3.
Xem lời giải »
Câu 7:
Tính các giá trị lượng giác sau: sin 570º, cos (−1035º), tan 1500º
Xem lời giải »
Câu 8:
Cho hàm số y = f(x) có đồ thị như hình vẽ. Phương trình f[f(cos x) − 1] = 0 có bao nhiêu nghiệm trên đoạn [0;2π]?
Xem lời giải »