X

1000 bài tập trắc nghiệm ôn tập môn Toán có đáp án

Cho biểu thức A = x/(2x - 2) + (x^2 + 1) / (2 - 2x^2)


Câu hỏi:

Cho biểu thức A = \(\frac{x}{{2x - 2}} + \frac{{{x^2} + 1}}{{2 - 2{x^2}}}\).

a) Rút gọn biểu thức A.

b) Tìm giá trị của x để A > –1.

Trả lời:

a) Điều kiện xác định: \(\left\{ \begin{array}{l}2x - 2 \ne 0\\2 - 2{x^2} \ne 0\end{array} \right.\) \(\left\{ \begin{array}{l}x \ne 1\\x \ne \pm 1\end{array} \right.\)

 A = \(\frac{x}{{2x - 2}} + \frac{{{x^2} + 1}}{{2 - 2{x^2}}}\)

A = \(\frac{x}{{2\left( {x - 1} \right)}} + \frac{{{x^2} + 1}}{{2\left( {1 - {x^2}} \right)}}\)

A = \(\frac{x}{{2\left( {x - 1} \right)}} - \frac{{{x^2} + 1}}{{2\left( {x - 1} \right)\left( {x + 1} \right)}}\)

A = \(\frac{{x\left( {x + 1} \right) - {x^2} - 1}}{{2\left( {x - 1} \right)\left( {x + 1} \right)}}\)

A = \(\frac{{{x^2} + x - {x^2} - 1}}{{2\left( {x - 1} \right)\left( {x + 1} \right)}}\)

A = \[\frac{{x - 1}}{{2\left( {x - 1} \right)\left( {x + 1} \right)}} = \frac{1}{{2\left( {x + 1} \right)}}\] (x ≠ ±1)

b) Để A > –1 tức \[\frac{1}{{2\left( {x + 1} \right)}} > - 1\]

\[\frac{1}{{2\left( {x + 1} \right)}} + 1 > 0\]

\[\frac{{1 + 2x + 2}}{{2\left( {x + 1} \right)}} > 0\]

\[\frac{{1 + 2x + 2}}{{2\left( {x + 1} \right)}} > 0\]

\[\frac{{2x + 3}}{{2\left( {x + 1} \right)}} > 0\]

\(\left[ \begin{array}{l}\left\{ \begin{array}{l}2x + 3 > 0\\2x + 2 > 0\end{array} \right.\\\left\{ \begin{array}{l}2x + 3 < 0\\2x + 2 < 0\end{array} \right.\end{array} \right.\)

\(\left[ \begin{array}{l}x > - 1\\x < \frac{{ - 3}}{2}\end{array} \right.\)

Vậy để A > –1 thì x (–∞; \(\frac{{ - 3}}{2}\)) (–1; +∞)\{1}

Xem thêm bài tập Toán có lời giải hay khác:

Câu 1:

Cho A, B, C nằm trên đường thẳng xy theo thứ tự đó. Vẽ đường tròn (O) đi qua B và C. Từ điểm A, vẽ hai tiếp tuyến AM; AN. Gọi E và F lần lượt là trung điểm của BC và MN.

a) Chứng minh AM2 = AN2 = AB.AC.

b) ME cắt (O) tại I. Chứng minh IN // AB.

c) Chứng minh tâm đường tròn ngoại tiếp tam giác OEF nằm trên 1 đường thẳng cố định khi (O) thay đổi nhưng luôn đi qua B và C.

Xem lời giải »


Câu 2:

Chứng minh rằng 4n3 + 9n2 – 19n – 30 chia hết cho 6 (n ℤ).

Xem lời giải »


Câu 3:

Bạn An nghĩ ra một số có 3 chữ số biết rằng số đó chia hết cho 18 và các chữ số của nó tỉ lệ với 1, 2, 3 và chữ số tận cùng là số chẵn.

Xem lời giải »


Câu 4:

Cho dãy số (un) với un = 2n + 3. Dãy số này có phải cấp số cộng không?

Xem lời giải »


Câu 5:

Gọi M là tập hợp các số tự nhiên có ba chữ số lập được từ các chữ số 0, 1, 2, 3, 4, 5, 6, 7. Lấy ngẫu nhiên đồng thời 2 số từ tập M. Xác suất để cả 2 số lấy được đều có chữ số hàng chục nhỏ hơn các chữ số hàng trăm và hàng đơn vị là?

Xem lời giải »


Câu 6:

Một nhà máy dự định sản xuất một số chi tiết máy trong một thời gian đã định, với năng suất 300 chi tiết máy trong một ngày. Nhưng thực tế mỗi ngày đã làm được 400 chi tiết nên đã sản xuất thêm được 600 chi tiết và hoàn thành kế hoạch trước 1 ngày. Tính số chi tiết máy dự định sản xuất.

Xem lời giải »


Câu 7:

Bảng giá cước của hãng taxi được cho như sau: Giá mở cửa 11 000 đồng. Giá tiếp theo từ 0,8km đến 30km là 15 800 đồng/1km. Từ km thứ 31 trở đi giá 12 500 đồng/1km. Quí thời gian chờ từ 5 phút đến 1 giờ là 3000 đồng. Giá trên đã bao gồm thuế VAT.

a) Gọi y (đồng) là số tiền khách phải trả sau khi đi x (km). Lập hàm số của y theo x. (Giả sử không tính thời gian chờ và phí cầu đường, bến bãi).

b) Một hàn khách thuê taxi quãng đường 40km phải trả số tiền là bao nhiêu?

Xem lời giải »


Câu 8:

Cho một số có 4 chữ số khác nhau biết tổng các chữ số là 9. Tính tích của các chữ số đó?

Xem lời giải »