Có bao nhiêu mặt cầu chứa một đường tròn cho trước? A. Chỉ có 2 mặt cầu; B. Chỉ có một mặt cầu; C. Có vô số mặt cầu; D. Không có mặt cầu nào.
Câu hỏi:
Có bao nhiêu mặt cầu chứa một đường tròn cho trước?
A. Chỉ có 2 mặt cầu;
B. Chỉ có một mặt cầu;
C. Có vô số mặt cầu;
D. Không có mặt cầu nào.
Trả lời:
Lời giải
Đáp án đúng là: C
Có vô số mặt cầu chứa một đường tròn cho trước.
Chọn đáp án C.
Xem thêm bài tập Toán có lời giải hay khác:
Câu 1:
Cho \(\left\{ \begin{array}{l}a + b \ne 0\\a;\;b \ne 0\end{array} \right.\). Chứng minh rằng: \[\sqrt {\frac{1}{{{a^2}}} + \frac{1}{{{b^2}}} + \frac{1}{{{{\left( {a + b} \right)}^2}}}} = \left| {\frac{1}{a} + \frac{1}{b} - \frac{1}{{a + b}}} \right|\].
Xem lời giải »
Câu 2:
Cho a, b, c là các số hữu tỉ khác 0 thỏa mãn a + b + c = 0. Chứng minh rằng: \(\frac{1}{{{a^2}}} + \frac{1}{{{b^2}}} + \frac{1}{{{c^2}}}\) là bình phương của một số hữu tỉ.
Xem lời giải »
Câu 3:
Cho biểu thức: \[A = \sqrt {\frac{{{{\left( {{x^2} - 3} \right)}^2} + 12{x^2}}}{{{x^2}}}} + \sqrt {{{\left( {x + 2} \right)}^2} - 8x} \].
a) Rút gọn A.
b) Tìm các giá trị nguyên của x để giá trị của A là một số nguyên.
Xem lời giải »
Câu 4:
Cho biểu thức: \(P = \left( { - \frac{2}{3}{x^2}{y^3}{z^2}} \right){\left( { - \frac{1}{2}xy} \right)^3}{\left( {x{y^2}z} \right)^2}\).
a) Rút gọn biểu thức P.
b) Tìm bậc và hệ số biểu thức B.
c) Tìm giá trị các biến để P £ 0.
Xem lời giải »
Câu 7:
Cho \(\left( {x + \sqrt {{x^2} + 3} } \right)\left( {y + \sqrt {{y^2} + 3} } \right) = 3\). Tính giá trị của biểu thức E = x + y.
Xem lời giải »
Câu 8:
Hệ phương trình \(\left\{ \begin{array}{l}{x^2} + \sqrt x = 2y\\{y^2} + \sqrt y = 2x\end{array} \right.\) có bao nhiêu cặp nghiệm (x; y) ¹ (0; 0)?
Xem lời giải »